remove attentions from common layers

pull/10/head
erogol 2021-01-11 15:06:42 +01:00
parent cc2b1e043d
commit 921fa5db92
1 changed files with 1 additions and 404 deletions

View File

@ -124,407 +124,4 @@ class Prenet(nn.Module):
x = F.dropout(F.relu(linear(x)), p=0.5, training=self.training)
else:
x = F.relu(linear(x))
return x
####################
# ATTENTION MODULES
####################
class LocationLayer(nn.Module):
def __init__(self,
attention_dim,
attention_n_filters=32,
attention_kernel_size=31):
super(LocationLayer, self).__init__()
self.location_conv1d = nn.Conv1d(
in_channels=2,
out_channels=attention_n_filters,
kernel_size=attention_kernel_size,
stride=1,
padding=(attention_kernel_size - 1) // 2,
bias=False)
self.location_dense = Linear(
attention_n_filters, attention_dim, bias=False, init_gain='tanh')
def forward(self, attention_cat):
processed_attention = self.location_conv1d(attention_cat)
processed_attention = self.location_dense(
processed_attention.transpose(1, 2))
return processed_attention
class GravesAttention(nn.Module):
""" Discretized Graves attention:
- https://arxiv.org/abs/1910.10288
- https://arxiv.org/pdf/1906.01083.pdf
"""
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi))
def __init__(self, query_dim, K):
super(GravesAttention, self).__init__()
self._mask_value = 1e-8
self.K = K
# self.attention_alignment = 0.05
self.eps = 1e-5
self.J = None
self.N_a = nn.Sequential(
nn.Linear(query_dim, query_dim, bias=True),
nn.ReLU(),
nn.Linear(query_dim, 3*K, bias=True))
self.attention_weights = None
self.mu_prev = None
self.init_layers()
def init_layers(self):
torch.nn.init.constant_(self.N_a[2].bias[(2*self.K):(3*self.K)], 1.) # bias mean
torch.nn.init.constant_(self.N_a[2].bias[self.K:(2*self.K)], 10) # bias std
def init_states(self, inputs):
if self.J is None or inputs.shape[1]+1 > self.J.shape[-1]:
self.J = torch.arange(0, inputs.shape[1]+2.0).to(inputs.device) + 0.5
self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device)
self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
# pylint: disable=R0201
# pylint: disable=unused-argument
def preprocess_inputs(self, inputs):
return None
def forward(self, query, inputs, processed_inputs, mask):
"""
shapes:
query: B x D_attention_rnn
inputs: B x T_in x D_encoder
processed_inputs: place_holder
mask: B x T_in
"""
gbk_t = self.N_a(query)
gbk_t = gbk_t.view(gbk_t.size(0), -1, self.K)
# attention model parameters
# each B x K
g_t = gbk_t[:, 0, :]
b_t = gbk_t[:, 1, :]
k_t = gbk_t[:, 2, :]
# dropout to decorrelate attention heads
g_t = torch.nn.functional.dropout(g_t, p=0.5, training=self.training)
# attention GMM parameters
sig_t = torch.nn.functional.softplus(b_t) + self.eps
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
g_t = torch.softmax(g_t, dim=-1) + self.eps
j = self.J[:inputs.size(1)+1]
# attention weights
phi_t = g_t.unsqueeze(-1) * (1 / (1 + torch.sigmoid((mu_t.unsqueeze(-1) - j) / sig_t.unsqueeze(-1))))
# discritize attention weights
alpha_t = torch.sum(phi_t, 1)
alpha_t = alpha_t[:, 1:] - alpha_t[:, :-1]
alpha_t[alpha_t == 0] = 1e-8
# apply masking
if mask is not None:
alpha_t.data.masked_fill_(~mask, self._mask_value)
context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
self.attention_weights = alpha_t
self.mu_prev = mu_t
return context
class OriginalAttention(nn.Module):
"""Following the methods proposed here:
- https://arxiv.org/abs/1712.05884
- https://arxiv.org/abs/1807.06736 + state masking at inference
- Using sigmoid instead of softmax normalization
- Attention windowing at inference time
"""
# Pylint gets confused by PyTorch conventions here
#pylint: disable=attribute-defined-outside-init
def __init__(self, query_dim, embedding_dim, attention_dim,
location_attention, attention_location_n_filters,
attention_location_kernel_size, windowing, norm, forward_attn,
trans_agent, forward_attn_mask):
super(OriginalAttention, self).__init__()
self.query_layer = Linear(
query_dim, attention_dim, bias=False, init_gain='tanh')
self.inputs_layer = Linear(
embedding_dim, attention_dim, bias=False, init_gain='tanh')
self.v = Linear(attention_dim, 1, bias=True)
if trans_agent:
self.ta = nn.Linear(
query_dim + embedding_dim, 1, bias=True)
if location_attention:
self.location_layer = LocationLayer(
attention_dim,
attention_location_n_filters,
attention_location_kernel_size,
)
self._mask_value = -float("inf")
self.windowing = windowing
self.win_idx = None
self.norm = norm
self.forward_attn = forward_attn
self.trans_agent = trans_agent
self.forward_attn_mask = forward_attn_mask
self.location_attention = location_attention
def init_win_idx(self):
self.win_idx = -1
self.win_back = 2
self.win_front = 6
def init_forward_attn(self, inputs):
B = inputs.shape[0]
T = inputs.shape[1]
self.alpha = torch.cat(
[torch.ones([B, 1]),
torch.zeros([B, T])[:, :-1] + 1e-7], dim=1).to(inputs.device)
self.u = (0.5 * torch.ones([B, 1])).to(inputs.device)
def init_location_attention(self, inputs):
B = inputs.size(0)
T = inputs.size(1)
self.attention_weights_cum = torch.zeros([B, T], device=inputs.device)
def init_states(self, inputs):
B = inputs.size(0)
T = inputs.size(1)
self.attention_weights = torch.zeros([B, T], device=inputs.device)
if self.location_attention:
self.init_location_attention(inputs)
if self.forward_attn:
self.init_forward_attn(inputs)
if self.windowing:
self.init_win_idx()
def preprocess_inputs(self, inputs):
return self.inputs_layer(inputs)
def update_location_attention(self, alignments):
self.attention_weights_cum += alignments
def get_location_attention(self, query, processed_inputs):
attention_cat = torch.cat((self.attention_weights.unsqueeze(1),
self.attention_weights_cum.unsqueeze(1)),
dim=1)
processed_query = self.query_layer(query.unsqueeze(1))
processed_attention_weights = self.location_layer(attention_cat)
energies = self.v(
torch.tanh(processed_query + processed_attention_weights +
processed_inputs))
energies = energies.squeeze(-1)
return energies, processed_query
def get_attention(self, query, processed_inputs):
processed_query = self.query_layer(query.unsqueeze(1))
energies = self.v(torch.tanh(processed_query + processed_inputs))
energies = energies.squeeze(-1)
return energies, processed_query
def apply_windowing(self, attention, inputs):
back_win = self.win_idx - self.win_back
front_win = self.win_idx + self.win_front
if back_win > 0:
attention[:, :back_win] = -float("inf")
if front_win < inputs.shape[1]:
attention[:, front_win:] = -float("inf")
# this is a trick to solve a special problem.
# but it does not hurt.
if self.win_idx == -1:
attention[:, 0] = attention.max()
# Update the window
self.win_idx = torch.argmax(attention, 1).long()[0].item()
return attention
def apply_forward_attention(self, alignment):
# forward attention
fwd_shifted_alpha = F.pad(
self.alpha[:, :-1].clone().to(alignment.device), (1, 0, 0, 0))
# compute transition potentials
alpha = ((1 - self.u) * self.alpha
+ self.u * fwd_shifted_alpha
+ 1e-8) * alignment
# force incremental alignment
if not self.training and self.forward_attn_mask:
_, n = fwd_shifted_alpha.max(1)
val, _ = alpha.max(1)
for b in range(alignment.shape[0]):
alpha[b, n[b] + 3:] = 0
alpha[b, :(
n[b] - 1
)] = 0 # ignore all previous states to prevent repetition.
alpha[b,
(n[b] - 2
)] = 0.01 * val[b] # smoothing factor for the prev step
# renormalize attention weights
alpha = alpha / alpha.sum(dim=1, keepdim=True)
return alpha
def forward(self, query, inputs, processed_inputs, mask):
"""
shapes:
query: B x D_attn_rnn
inputs: B x T_en x D_en
processed_inputs:: B x T_en x D_attn
mask: B x T_en
"""
if self.location_attention:
attention, _ = self.get_location_attention(
query, processed_inputs)
else:
attention, _ = self.get_attention(
query, processed_inputs)
# apply masking
if mask is not None:
attention.data.masked_fill_(~mask, self._mask_value)
# apply windowing - only in eval mode
if not self.training and self.windowing:
attention = self.apply_windowing(attention, inputs)
# normalize attention values
if self.norm == "softmax":
alignment = torch.softmax(attention, dim=-1)
elif self.norm == "sigmoid":
alignment = torch.sigmoid(attention) / torch.sigmoid(
attention).sum(
dim=1, keepdim=True)
else:
raise ValueError("Unknown value for attention norm type")
if self.location_attention:
self.update_location_attention(alignment)
# apply forward attention if enabled
if self.forward_attn:
alignment = self.apply_forward_attention(alignment)
self.alpha = alignment
context = torch.bmm(alignment.unsqueeze(1), inputs)
context = context.squeeze(1)
self.attention_weights = alignment
# compute transition agent
if self.forward_attn and self.trans_agent:
ta_input = torch.cat([context, query.squeeze(1)], dim=-1)
self.u = torch.sigmoid(self.ta(ta_input))
return context
class MonotonicDynamicConvolutionAttention(nn.Module):
"""Dynamic convolution attention from
https://arxiv.org/pdf/1910.10288.pdf
"""
def __init__(
self,
query_dim,
embedding_dim, # pylint: disable=unused-argument
attention_dim,
static_filter_dim,
static_kernel_size,
dynamic_filter_dim,
dynamic_kernel_size,
prior_filter_len=11,
alpha=0.1,
beta=0.9,
):
super().__init__()
self._mask_value = 1e-8
self.dynamic_filter_dim = dynamic_filter_dim
self.dynamic_kernel_size = dynamic_kernel_size
self.prior_filter_len = prior_filter_len
self.attention_weights = None
# setup key and query layers
self.query_layer = nn.Linear(query_dim, attention_dim)
self.key_layer = nn.Linear(
attention_dim, dynamic_filter_dim * dynamic_kernel_size, bias=False
)
self.static_filter_conv = nn.Conv1d(
1,
static_filter_dim,
static_kernel_size,
padding=(static_kernel_size - 1) // 2,
bias=False,
)
self.static_filter_layer = nn.Linear(static_filter_dim, attention_dim, bias=False)
self.dynamic_filter_layer = nn.Linear(dynamic_filter_dim, attention_dim)
self.v = nn.Linear(attention_dim, 1, bias=False)
prior = betabinom.pmf(range(prior_filter_len), prior_filter_len - 1,
alpha, beta)
self.register_buffer("prior", torch.FloatTensor(prior).flip(0))
# pylint: disable=unused-argument
def forward(self, query, inputs, processed_inputs, mask):
# compute prior filters
prior_filter = F.conv1d(
F.pad(self.attention_weights.unsqueeze(1),
(self.prior_filter_len - 1, 0)), self.prior.view(1, 1, -1))
prior_filter = torch.log(prior_filter.clamp_min_(1e-6)).squeeze(1)
G = self.key_layer(torch.tanh(self.query_layer(query)))
# compute dynamic filters
dynamic_filter = F.conv1d(
self.attention_weights.unsqueeze(0),
G.view(-1, 1, self.dynamic_kernel_size),
padding=(self.dynamic_kernel_size - 1) // 2,
groups=query.size(0),
)
dynamic_filter = dynamic_filter.view(query.size(0), self.dynamic_filter_dim, -1).transpose(1, 2)
# compute static filters
static_filter = self.static_filter_conv(self.attention_weights.unsqueeze(1)).transpose(1, 2)
alignment = self.v(
torch.tanh(
self.static_filter_layer(static_filter) +
self.dynamic_filter_layer(dynamic_filter))).squeeze(-1) + prior_filter
# compute attention weights
attention_weights = F.softmax(alignment, dim=-1)
# apply masking
if mask is not None:
attention_weights.data.masked_fill_(~mask, self._mask_value)
self.attention_weights = attention_weights
# compute context
context = torch.bmm(attention_weights.unsqueeze(1), inputs).squeeze(1)
return context
def preprocess_inputs(self, inputs): # pylint: disable=no-self-use
return None
def init_states(self, inputs):
B = inputs.size(0)
T = inputs.size(1)
self.attention_weights = torch.zeros([B, T], device=inputs.device)
self.attention_weights[:, 0] = 1.
def init_attn(attn_type, query_dim, embedding_dim, attention_dim,
location_attention, attention_location_n_filters,
attention_location_kernel_size, windowing, norm, forward_attn,
trans_agent, forward_attn_mask, attn_K):
if attn_type == "original":
return OriginalAttention(query_dim, embedding_dim, attention_dim,
location_attention,
attention_location_n_filters,
attention_location_kernel_size, windowing,
norm, forward_attn, trans_agent,
forward_attn_mask)
if attn_type == "graves":
return GravesAttention(query_dim, attn_K)
if attn_type == "dynamic_convolution":
return MonotonicDynamicConvolutionAttention(query_dim,
embedding_dim,
attention_dim,
static_filter_dim=8,
static_kernel_size=21,
dynamic_filter_dim=8,
dynamic_kernel_size=21,
prior_filter_len=11,
alpha=0.1,
beta=0.9)
raise RuntimeError(
" [!] Given Attention Type '{attn_type}' is not exist.")
return x