mirror of https://github.com/coqui-ai/TTS.git
remove attentions from common layers
parent
cc2b1e043d
commit
921fa5db92
|
@ -124,407 +124,4 @@ class Prenet(nn.Module):
|
|||
x = F.dropout(F.relu(linear(x)), p=0.5, training=self.training)
|
||||
else:
|
||||
x = F.relu(linear(x))
|
||||
return x
|
||||
|
||||
|
||||
####################
|
||||
# ATTENTION MODULES
|
||||
####################
|
||||
|
||||
|
||||
class LocationLayer(nn.Module):
|
||||
def __init__(self,
|
||||
attention_dim,
|
||||
attention_n_filters=32,
|
||||
attention_kernel_size=31):
|
||||
super(LocationLayer, self).__init__()
|
||||
self.location_conv1d = nn.Conv1d(
|
||||
in_channels=2,
|
||||
out_channels=attention_n_filters,
|
||||
kernel_size=attention_kernel_size,
|
||||
stride=1,
|
||||
padding=(attention_kernel_size - 1) // 2,
|
||||
bias=False)
|
||||
self.location_dense = Linear(
|
||||
attention_n_filters, attention_dim, bias=False, init_gain='tanh')
|
||||
|
||||
def forward(self, attention_cat):
|
||||
processed_attention = self.location_conv1d(attention_cat)
|
||||
processed_attention = self.location_dense(
|
||||
processed_attention.transpose(1, 2))
|
||||
return processed_attention
|
||||
|
||||
|
||||
class GravesAttention(nn.Module):
|
||||
""" Discretized Graves attention:
|
||||
- https://arxiv.org/abs/1910.10288
|
||||
- https://arxiv.org/pdf/1906.01083.pdf
|
||||
"""
|
||||
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi))
|
||||
|
||||
def __init__(self, query_dim, K):
|
||||
super(GravesAttention, self).__init__()
|
||||
self._mask_value = 1e-8
|
||||
self.K = K
|
||||
# self.attention_alignment = 0.05
|
||||
self.eps = 1e-5
|
||||
self.J = None
|
||||
self.N_a = nn.Sequential(
|
||||
nn.Linear(query_dim, query_dim, bias=True),
|
||||
nn.ReLU(),
|
||||
nn.Linear(query_dim, 3*K, bias=True))
|
||||
self.attention_weights = None
|
||||
self.mu_prev = None
|
||||
self.init_layers()
|
||||
|
||||
def init_layers(self):
|
||||
torch.nn.init.constant_(self.N_a[2].bias[(2*self.K):(3*self.K)], 1.) # bias mean
|
||||
torch.nn.init.constant_(self.N_a[2].bias[self.K:(2*self.K)], 10) # bias std
|
||||
|
||||
def init_states(self, inputs):
|
||||
if self.J is None or inputs.shape[1]+1 > self.J.shape[-1]:
|
||||
self.J = torch.arange(0, inputs.shape[1]+2.0).to(inputs.device) + 0.5
|
||||
self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device)
|
||||
self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
|
||||
|
||||
# pylint: disable=R0201
|
||||
# pylint: disable=unused-argument
|
||||
def preprocess_inputs(self, inputs):
|
||||
return None
|
||||
|
||||
def forward(self, query, inputs, processed_inputs, mask):
|
||||
"""
|
||||
shapes:
|
||||
query: B x D_attention_rnn
|
||||
inputs: B x T_in x D_encoder
|
||||
processed_inputs: place_holder
|
||||
mask: B x T_in
|
||||
"""
|
||||
gbk_t = self.N_a(query)
|
||||
gbk_t = gbk_t.view(gbk_t.size(0), -1, self.K)
|
||||
|
||||
# attention model parameters
|
||||
# each B x K
|
||||
g_t = gbk_t[:, 0, :]
|
||||
b_t = gbk_t[:, 1, :]
|
||||
k_t = gbk_t[:, 2, :]
|
||||
|
||||
# dropout to decorrelate attention heads
|
||||
g_t = torch.nn.functional.dropout(g_t, p=0.5, training=self.training)
|
||||
|
||||
# attention GMM parameters
|
||||
sig_t = torch.nn.functional.softplus(b_t) + self.eps
|
||||
|
||||
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
|
||||
g_t = torch.softmax(g_t, dim=-1) + self.eps
|
||||
|
||||
j = self.J[:inputs.size(1)+1]
|
||||
|
||||
# attention weights
|
||||
phi_t = g_t.unsqueeze(-1) * (1 / (1 + torch.sigmoid((mu_t.unsqueeze(-1) - j) / sig_t.unsqueeze(-1))))
|
||||
|
||||
# discritize attention weights
|
||||
alpha_t = torch.sum(phi_t, 1)
|
||||
alpha_t = alpha_t[:, 1:] - alpha_t[:, :-1]
|
||||
alpha_t[alpha_t == 0] = 1e-8
|
||||
|
||||
# apply masking
|
||||
if mask is not None:
|
||||
alpha_t.data.masked_fill_(~mask, self._mask_value)
|
||||
|
||||
context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
|
||||
self.attention_weights = alpha_t
|
||||
self.mu_prev = mu_t
|
||||
return context
|
||||
|
||||
|
||||
class OriginalAttention(nn.Module):
|
||||
"""Following the methods proposed here:
|
||||
- https://arxiv.org/abs/1712.05884
|
||||
- https://arxiv.org/abs/1807.06736 + state masking at inference
|
||||
- Using sigmoid instead of softmax normalization
|
||||
- Attention windowing at inference time
|
||||
"""
|
||||
# Pylint gets confused by PyTorch conventions here
|
||||
#pylint: disable=attribute-defined-outside-init
|
||||
def __init__(self, query_dim, embedding_dim, attention_dim,
|
||||
location_attention, attention_location_n_filters,
|
||||
attention_location_kernel_size, windowing, norm, forward_attn,
|
||||
trans_agent, forward_attn_mask):
|
||||
super(OriginalAttention, self).__init__()
|
||||
self.query_layer = Linear(
|
||||
query_dim, attention_dim, bias=False, init_gain='tanh')
|
||||
self.inputs_layer = Linear(
|
||||
embedding_dim, attention_dim, bias=False, init_gain='tanh')
|
||||
self.v = Linear(attention_dim, 1, bias=True)
|
||||
if trans_agent:
|
||||
self.ta = nn.Linear(
|
||||
query_dim + embedding_dim, 1, bias=True)
|
||||
if location_attention:
|
||||
self.location_layer = LocationLayer(
|
||||
attention_dim,
|
||||
attention_location_n_filters,
|
||||
attention_location_kernel_size,
|
||||
)
|
||||
self._mask_value = -float("inf")
|
||||
self.windowing = windowing
|
||||
self.win_idx = None
|
||||
self.norm = norm
|
||||
self.forward_attn = forward_attn
|
||||
self.trans_agent = trans_agent
|
||||
self.forward_attn_mask = forward_attn_mask
|
||||
self.location_attention = location_attention
|
||||
|
||||
def init_win_idx(self):
|
||||
self.win_idx = -1
|
||||
self.win_back = 2
|
||||
self.win_front = 6
|
||||
|
||||
def init_forward_attn(self, inputs):
|
||||
B = inputs.shape[0]
|
||||
T = inputs.shape[1]
|
||||
self.alpha = torch.cat(
|
||||
[torch.ones([B, 1]),
|
||||
torch.zeros([B, T])[:, :-1] + 1e-7], dim=1).to(inputs.device)
|
||||
self.u = (0.5 * torch.ones([B, 1])).to(inputs.device)
|
||||
|
||||
def init_location_attention(self, inputs):
|
||||
B = inputs.size(0)
|
||||
T = inputs.size(1)
|
||||
self.attention_weights_cum = torch.zeros([B, T], device=inputs.device)
|
||||
|
||||
def init_states(self, inputs):
|
||||
B = inputs.size(0)
|
||||
T = inputs.size(1)
|
||||
self.attention_weights = torch.zeros([B, T], device=inputs.device)
|
||||
if self.location_attention:
|
||||
self.init_location_attention(inputs)
|
||||
if self.forward_attn:
|
||||
self.init_forward_attn(inputs)
|
||||
if self.windowing:
|
||||
self.init_win_idx()
|
||||
|
||||
def preprocess_inputs(self, inputs):
|
||||
return self.inputs_layer(inputs)
|
||||
|
||||
def update_location_attention(self, alignments):
|
||||
self.attention_weights_cum += alignments
|
||||
|
||||
def get_location_attention(self, query, processed_inputs):
|
||||
attention_cat = torch.cat((self.attention_weights.unsqueeze(1),
|
||||
self.attention_weights_cum.unsqueeze(1)),
|
||||
dim=1)
|
||||
processed_query = self.query_layer(query.unsqueeze(1))
|
||||
processed_attention_weights = self.location_layer(attention_cat)
|
||||
energies = self.v(
|
||||
torch.tanh(processed_query + processed_attention_weights +
|
||||
processed_inputs))
|
||||
energies = energies.squeeze(-1)
|
||||
return energies, processed_query
|
||||
|
||||
def get_attention(self, query, processed_inputs):
|
||||
processed_query = self.query_layer(query.unsqueeze(1))
|
||||
energies = self.v(torch.tanh(processed_query + processed_inputs))
|
||||
energies = energies.squeeze(-1)
|
||||
return energies, processed_query
|
||||
|
||||
def apply_windowing(self, attention, inputs):
|
||||
back_win = self.win_idx - self.win_back
|
||||
front_win = self.win_idx + self.win_front
|
||||
if back_win > 0:
|
||||
attention[:, :back_win] = -float("inf")
|
||||
if front_win < inputs.shape[1]:
|
||||
attention[:, front_win:] = -float("inf")
|
||||
# this is a trick to solve a special problem.
|
||||
# but it does not hurt.
|
||||
if self.win_idx == -1:
|
||||
attention[:, 0] = attention.max()
|
||||
# Update the window
|
||||
self.win_idx = torch.argmax(attention, 1).long()[0].item()
|
||||
return attention
|
||||
|
||||
def apply_forward_attention(self, alignment):
|
||||
# forward attention
|
||||
fwd_shifted_alpha = F.pad(
|
||||
self.alpha[:, :-1].clone().to(alignment.device), (1, 0, 0, 0))
|
||||
# compute transition potentials
|
||||
alpha = ((1 - self.u) * self.alpha
|
||||
+ self.u * fwd_shifted_alpha
|
||||
+ 1e-8) * alignment
|
||||
# force incremental alignment
|
||||
if not self.training and self.forward_attn_mask:
|
||||
_, n = fwd_shifted_alpha.max(1)
|
||||
val, _ = alpha.max(1)
|
||||
for b in range(alignment.shape[0]):
|
||||
alpha[b, n[b] + 3:] = 0
|
||||
alpha[b, :(
|
||||
n[b] - 1
|
||||
)] = 0 # ignore all previous states to prevent repetition.
|
||||
alpha[b,
|
||||
(n[b] - 2
|
||||
)] = 0.01 * val[b] # smoothing factor for the prev step
|
||||
# renormalize attention weights
|
||||
alpha = alpha / alpha.sum(dim=1, keepdim=True)
|
||||
return alpha
|
||||
|
||||
def forward(self, query, inputs, processed_inputs, mask):
|
||||
"""
|
||||
shapes:
|
||||
query: B x D_attn_rnn
|
||||
inputs: B x T_en x D_en
|
||||
processed_inputs:: B x T_en x D_attn
|
||||
mask: B x T_en
|
||||
"""
|
||||
if self.location_attention:
|
||||
attention, _ = self.get_location_attention(
|
||||
query, processed_inputs)
|
||||
else:
|
||||
attention, _ = self.get_attention(
|
||||
query, processed_inputs)
|
||||
# apply masking
|
||||
if mask is not None:
|
||||
attention.data.masked_fill_(~mask, self._mask_value)
|
||||
# apply windowing - only in eval mode
|
||||
if not self.training and self.windowing:
|
||||
attention = self.apply_windowing(attention, inputs)
|
||||
|
||||
# normalize attention values
|
||||
if self.norm == "softmax":
|
||||
alignment = torch.softmax(attention, dim=-1)
|
||||
elif self.norm == "sigmoid":
|
||||
alignment = torch.sigmoid(attention) / torch.sigmoid(
|
||||
attention).sum(
|
||||
dim=1, keepdim=True)
|
||||
else:
|
||||
raise ValueError("Unknown value for attention norm type")
|
||||
|
||||
if self.location_attention:
|
||||
self.update_location_attention(alignment)
|
||||
|
||||
# apply forward attention if enabled
|
||||
if self.forward_attn:
|
||||
alignment = self.apply_forward_attention(alignment)
|
||||
self.alpha = alignment
|
||||
|
||||
context = torch.bmm(alignment.unsqueeze(1), inputs)
|
||||
context = context.squeeze(1)
|
||||
self.attention_weights = alignment
|
||||
|
||||
# compute transition agent
|
||||
if self.forward_attn and self.trans_agent:
|
||||
ta_input = torch.cat([context, query.squeeze(1)], dim=-1)
|
||||
self.u = torch.sigmoid(self.ta(ta_input))
|
||||
return context
|
||||
|
||||
class MonotonicDynamicConvolutionAttention(nn.Module):
|
||||
"""Dynamic convolution attention from
|
||||
https://arxiv.org/pdf/1910.10288.pdf
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
query_dim,
|
||||
embedding_dim, # pylint: disable=unused-argument
|
||||
attention_dim,
|
||||
static_filter_dim,
|
||||
static_kernel_size,
|
||||
dynamic_filter_dim,
|
||||
dynamic_kernel_size,
|
||||
prior_filter_len=11,
|
||||
alpha=0.1,
|
||||
beta=0.9,
|
||||
):
|
||||
super().__init__()
|
||||
self._mask_value = 1e-8
|
||||
self.dynamic_filter_dim = dynamic_filter_dim
|
||||
self.dynamic_kernel_size = dynamic_kernel_size
|
||||
self.prior_filter_len = prior_filter_len
|
||||
self.attention_weights = None
|
||||
# setup key and query layers
|
||||
self.query_layer = nn.Linear(query_dim, attention_dim)
|
||||
self.key_layer = nn.Linear(
|
||||
attention_dim, dynamic_filter_dim * dynamic_kernel_size, bias=False
|
||||
)
|
||||
self.static_filter_conv = nn.Conv1d(
|
||||
1,
|
||||
static_filter_dim,
|
||||
static_kernel_size,
|
||||
padding=(static_kernel_size - 1) // 2,
|
||||
bias=False,
|
||||
)
|
||||
self.static_filter_layer = nn.Linear(static_filter_dim, attention_dim, bias=False)
|
||||
self.dynamic_filter_layer = nn.Linear(dynamic_filter_dim, attention_dim)
|
||||
self.v = nn.Linear(attention_dim, 1, bias=False)
|
||||
|
||||
prior = betabinom.pmf(range(prior_filter_len), prior_filter_len - 1,
|
||||
alpha, beta)
|
||||
self.register_buffer("prior", torch.FloatTensor(prior).flip(0))
|
||||
|
||||
# pylint: disable=unused-argument
|
||||
def forward(self, query, inputs, processed_inputs, mask):
|
||||
# compute prior filters
|
||||
prior_filter = F.conv1d(
|
||||
F.pad(self.attention_weights.unsqueeze(1),
|
||||
(self.prior_filter_len - 1, 0)), self.prior.view(1, 1, -1))
|
||||
prior_filter = torch.log(prior_filter.clamp_min_(1e-6)).squeeze(1)
|
||||
G = self.key_layer(torch.tanh(self.query_layer(query)))
|
||||
# compute dynamic filters
|
||||
dynamic_filter = F.conv1d(
|
||||
self.attention_weights.unsqueeze(0),
|
||||
G.view(-1, 1, self.dynamic_kernel_size),
|
||||
padding=(self.dynamic_kernel_size - 1) // 2,
|
||||
groups=query.size(0),
|
||||
)
|
||||
dynamic_filter = dynamic_filter.view(query.size(0), self.dynamic_filter_dim, -1).transpose(1, 2)
|
||||
# compute static filters
|
||||
static_filter = self.static_filter_conv(self.attention_weights.unsqueeze(1)).transpose(1, 2)
|
||||
alignment = self.v(
|
||||
torch.tanh(
|
||||
self.static_filter_layer(static_filter) +
|
||||
self.dynamic_filter_layer(dynamic_filter))).squeeze(-1) + prior_filter
|
||||
# compute attention weights
|
||||
attention_weights = F.softmax(alignment, dim=-1)
|
||||
# apply masking
|
||||
if mask is not None:
|
||||
attention_weights.data.masked_fill_(~mask, self._mask_value)
|
||||
self.attention_weights = attention_weights
|
||||
# compute context
|
||||
context = torch.bmm(attention_weights.unsqueeze(1), inputs).squeeze(1)
|
||||
return context
|
||||
|
||||
def preprocess_inputs(self, inputs): # pylint: disable=no-self-use
|
||||
return None
|
||||
|
||||
def init_states(self, inputs):
|
||||
B = inputs.size(0)
|
||||
T = inputs.size(1)
|
||||
self.attention_weights = torch.zeros([B, T], device=inputs.device)
|
||||
self.attention_weights[:, 0] = 1.
|
||||
|
||||
|
||||
def init_attn(attn_type, query_dim, embedding_dim, attention_dim,
|
||||
location_attention, attention_location_n_filters,
|
||||
attention_location_kernel_size, windowing, norm, forward_attn,
|
||||
trans_agent, forward_attn_mask, attn_K):
|
||||
if attn_type == "original":
|
||||
return OriginalAttention(query_dim, embedding_dim, attention_dim,
|
||||
location_attention,
|
||||
attention_location_n_filters,
|
||||
attention_location_kernel_size, windowing,
|
||||
norm, forward_attn, trans_agent,
|
||||
forward_attn_mask)
|
||||
if attn_type == "graves":
|
||||
return GravesAttention(query_dim, attn_K)
|
||||
if attn_type == "dynamic_convolution":
|
||||
return MonotonicDynamicConvolutionAttention(query_dim,
|
||||
embedding_dim,
|
||||
attention_dim,
|
||||
static_filter_dim=8,
|
||||
static_kernel_size=21,
|
||||
dynamic_filter_dim=8,
|
||||
dynamic_kernel_size=21,
|
||||
prior_filter_len=11,
|
||||
alpha=0.1,
|
||||
beta=0.9)
|
||||
|
||||
raise RuntimeError(
|
||||
" [!] Given Attention Type '{attn_type}' is not exist.")
|
||||
return x
|
Loading…
Reference in New Issue