mirror of https://github.com/coqui-ai/TTS.git
fix memory leak duee to diagonal alingmnet score
parent
fc9af0ab3c
commit
8dec2a9e95
4
train.py
4
train.py
|
@ -204,7 +204,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||||
"GradNormST:{:.5f} AvgTextLen:{:.1f} AvgSpecLen:{:.1f} StepTime:{:.2f} "
|
"GradNormST:{:.5f} AvgTextLen:{:.1f} AvgSpecLen:{:.1f} StepTime:{:.2f} "
|
||||||
"LoaderTime:{:.2f} LR:{:.6f}".format(
|
"LoaderTime:{:.2f} LR:{:.6f}".format(
|
||||||
num_iter, batch_n_iter, global_step,
|
num_iter, batch_n_iter, global_step,
|
||||||
postnet_loss.item(), decoder_loss.item(), stop_loss.item(), align_score.item(),
|
postnet_loss.item(), decoder_loss.item(), stop_loss.item(), align_score,
|
||||||
grad_norm, grad_norm_st, avg_text_length, avg_spec_length, step_time,
|
grad_norm, grad_norm_st, avg_text_length, avg_spec_length, step_time,
|
||||||
loader_time, current_lr),
|
loader_time, current_lr),
|
||||||
flush=True)
|
flush=True)
|
||||||
|
@ -404,7 +404,7 @@ def evaluate(model, criterion, criterion_st, ap, global_step, epoch):
|
||||||
postnet_loss.item(), keep_avg['avg_postnet_loss'],
|
postnet_loss.item(), keep_avg['avg_postnet_loss'],
|
||||||
decoder_loss.item(), keep_avg['avg_decoder_loss'],
|
decoder_loss.item(), keep_avg['avg_decoder_loss'],
|
||||||
stop_loss.item(), keep_avg['avg_stop_loss'],
|
stop_loss.item(), keep_avg['avg_stop_loss'],
|
||||||
align_score.item(), keep_avg['avg_align_score']),
|
align_score, keep_avg['avg_align_score']),
|
||||||
flush=True)
|
flush=True)
|
||||||
|
|
||||||
if args.rank == 0:
|
if args.rank == 0:
|
||||||
|
|
|
@ -8,4 +8,4 @@ def alignment_diagonal_score(alignments):
|
||||||
Shape:
|
Shape:
|
||||||
alignments : batch x decoder_steps x encoder_steps
|
alignments : batch x decoder_steps x encoder_steps
|
||||||
"""
|
"""
|
||||||
return alignments.max(dim=1)[0].mean(dim=1).mean(dim=0)
|
return alignments.max(dim=1)[0].mean(dim=1).mean(dim=0).item()
|
||||||
|
|
Loading…
Reference in New Issue