mirror of https://github.com/coqui-ai/TTS.git
partial model initialization
parent
619c73f0f1
commit
8d865629a0
|
@ -339,11 +339,10 @@ class Decoder(nn.Module):
|
|||
|
||||
def _reshape_memory(self, memory):
|
||||
B = memory.shape[0]
|
||||
if memory is not None:
|
||||
# Grouping multiple frames if necessary
|
||||
if memory.size(-1) == self.memory_dim:
|
||||
memory = memory.contiguous()
|
||||
memory = memory.view(B, memory.size(1) // self.r, -1)
|
||||
# Grouping multiple frames if necessary
|
||||
if memory.size(-1) == self.memory_dim:
|
||||
memory = memory.contiguous()
|
||||
memory = memory.view(B, memory.size(1) // self.r, -1)
|
||||
# Time first (T_decoder, B, memory_dim)
|
||||
memory = memory.transpose(0, 1)
|
||||
return memory
|
||||
|
@ -370,7 +369,8 @@ class Decoder(nn.Module):
|
|||
T = inputs.size(1)
|
||||
# Run greedy decoding if memory is None
|
||||
greedy = not self.training
|
||||
memory = self._reshape_memory(memory)
|
||||
if memory is not None:
|
||||
memory = self._reshape_memory(memory)
|
||||
T_decoder = memory.size(0)
|
||||
# go frame as zeros matrix
|
||||
initial_memory = inputs.data.new(B, self.memory_dim * self.r).zero_()
|
||||
|
@ -461,4 +461,4 @@ class StopNet(nn.Module):
|
|||
outputs = self.dropout(inputs)
|
||||
outputs = self.linear(outputs)
|
||||
outputs = self.sigmoid(outputs)
|
||||
return outputs
|
||||
return outputs
|
||||
|
|
10
train.py
10
train.py
|
@ -401,6 +401,16 @@ def main(args):
|
|||
if args.restore_path:
|
||||
checkpoint = torch.load(args.restore_path)
|
||||
model.load_state_dict(checkpoint['model'])
|
||||
# Partial initialization: if there is a mismatch with new and old layer, it is skipped.
|
||||
# 1. filter out unnecessary keys
|
||||
pretrained_dict = {
|
||||
k: v
|
||||
for k, v in checkpoint['model'].items() if k in model_dict
|
||||
}
|
||||
# 2. overwrite entries in the existing state dict
|
||||
model_dict.update(pretrained_dict)
|
||||
# 3. load the new state dict
|
||||
model.load_state_dict(model_dict)
|
||||
if use_cuda:
|
||||
model = model.cuda()
|
||||
criterion.cuda()
|
||||
|
|
Loading…
Reference in New Issue