mirror of https://github.com/coqui-ai/TTS.git
pull/1/head
parent
8a201c92c6
commit
8a931e705c
|
@ -1,6 +1,6 @@
|
|||
{
|
||||
"run_name": "multiband-melgan-rwd",
|
||||
"run_description": "multibadn melgan with random window discriminator",
|
||||
"run_description": "multiband melgan with random window discriminator from https://arxiv.org/pdf/1909.11646.pdf",
|
||||
|
||||
// AUDIO PARAMETERS
|
||||
"audio":{
|
||||
|
@ -54,33 +54,30 @@
|
|||
"use_hinge_gan_loss": false,
|
||||
"use_feat_match_loss": false, // use only with melgan discriminators
|
||||
|
||||
// loss weights
|
||||
"stft_loss_weight": 0.5,
|
||||
"subband_stft_loss_weight": 0.5,
|
||||
"mse_G_loss_weight": 2.5,
|
||||
"hinge_G_loss_weight": 2.5,
|
||||
"feat_match_loss_weight": 25.0,
|
||||
"feat_match_loss_weight": 25,
|
||||
|
||||
// multiscale stft loss parameters
|
||||
"stft_loss_params": {
|
||||
"n_ffts": [1024, 2048, 512],
|
||||
"hop_lengths": [120, 240, 50],
|
||||
"win_lengths": [600, 1200, 240]
|
||||
},
|
||||
|
||||
// subband multiscale stft loss parameters
|
||||
"subband_stft_loss_params":{
|
||||
"n_ffts": [384, 683, 171],
|
||||
"hop_lengths": [30, 60, 10],
|
||||
"win_lengths": [150, 300, 60]
|
||||
},
|
||||
"target_loss": "avg_G_loss",
|
||||
|
||||
"target_loss": "avg_G_loss", // loss value to pick the best model to save after each epoch
|
||||
|
||||
// DISCRIMINATOR
|
||||
// "discriminator_model": "melgan_multiscale_discriminator",
|
||||
// "discriminator_model_params":{
|
||||
// "base_channels": 16,
|
||||
// "max_channels":1024,
|
||||
// "downsample_factors":[4, 4, 4, 4]
|
||||
// },
|
||||
"steps_to_start_discriminator": 200000, // steps required to start GAN trainining.1
|
||||
|
||||
"discriminator_model": "random_window_discriminator",
|
||||
"discriminator_model_params":{
|
||||
"uncond_disc_donwsample_factors": [8, 4],
|
||||
|
@ -88,6 +85,7 @@
|
|||
"cond_disc_out_channels": [[128, 128, 256, 256], [128, 256, 256], [128, 256], [256], [128, 256]],
|
||||
"window_sizes": [512, 1024, 2048, 4096, 8192]
|
||||
},
|
||||
"steps_to_start_discriminator": 200000, // steps required to start GAN trainining.1
|
||||
|
||||
// GENERATOR
|
||||
"generator_model": "multiband_melgan_generator",
|
||||
|
@ -97,11 +95,11 @@
|
|||
},
|
||||
|
||||
// DATASET
|
||||
"data_path": "/root/LJSpeech-1.1/wavs/",
|
||||
"data_path": "/home/erogol/Data/LJSpeech-1.1/wavs/",
|
||||
"seq_len": 16384,
|
||||
"pad_short": 2000,
|
||||
"conv_pad": 0,
|
||||
"use_noise_augment": true,
|
||||
"use_noise_augment": false,
|
||||
"use_cache": true,
|
||||
|
||||
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
|
||||
|
@ -118,17 +116,27 @@
|
|||
"noam_schedule": false, // use noam warmup and lr schedule.
|
||||
"warmup_steps_gen": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||
"warmup_steps_disc": 4000,
|
||||
"epochs": 100000, // total number of epochs to train.
|
||||
"wd": 0.000001, // Weight decay weight.
|
||||
"lr_gen": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"lr_disc": 0.0001,
|
||||
"gen_clip_grad": 10.0,
|
||||
"disc_clip_grad": 10.0,
|
||||
"epochs": 10000, // total number of epochs to train.
|
||||
"wd": 0.0, // Weight decay weight.
|
||||
"gen_clip_grad": -1, // Generator gradient clipping threshold. Apply gradient clipping if > 0
|
||||
"disc_clip_grad": -1, // Discriminator gradient clipping threshold.
|
||||
"lr_scheduler_gen": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
|
||||
"lr_scheduler_gen_params": {
|
||||
"gamma": 0.5,
|
||||
"milestones": [100000, 200000, 300000, 400000, 500000, 600000]
|
||||
},
|
||||
"lr_scheduler_disc": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
|
||||
"lr_scheduler_disc_params": {
|
||||
"gamma": 0.5,
|
||||
"milestones": [100000, 200000, 300000, 400000, 500000, 600000]
|
||||
},
|
||||
"lr_gen": 1e-4, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"lr_disc": 1e-4,
|
||||
|
||||
// TENSORBOARD and LOGGING
|
||||
"print_step": 25, // Number of steps to log traning on console.
|
||||
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
|
||||
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
|
||||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
|
@ -138,6 +146,6 @@
|
|||
"eval_split_size": 10,
|
||||
|
||||
// PATHS
|
||||
"output_path": "/data/rw/home/Trainings/"
|
||||
"output_path": "/home/erogol/Models/LJSpeech/"
|
||||
}
|
||||
|
||||
|
|
|
@ -215,7 +215,7 @@ def train(model_G, criterion_G, optimizer_G, model_D, criterion_D, optimizer_D,
|
|||
torch.nn.utils.clip_grad_norm_(model_D.parameters(),
|
||||
c.disc_clip_grad)
|
||||
optimizer_D.step()
|
||||
if c.scheduler_D is not None:
|
||||
if scheduler_D is not None:
|
||||
scheduler_D.step()
|
||||
|
||||
for key, value in loss_D_dict.items():
|
||||
|
|
Loading…
Reference in New Issue