Add TWEB data loader tests

pull/10/head
Eren Golge 2018-04-17 09:56:31 -07:00
parent ae4b87580a
commit 89dded8964
2 changed files with 143 additions and 8 deletions

View File

@ -5,21 +5,22 @@ import numpy as np
from torch.utils.data import DataLoader
from TTS.utils.generic_utils import load_config
from TTS.datasets.LJSpeech import LJSpeechDataset
from TTS.datasets.TWEB import TWEBDataset
file_path = os.path.dirname(os.path.realpath(__file__))
c = load_config(os.path.join(file_path, 'test_config.json'))
class TestDataset(unittest.TestCase):
class TestLJSpeechDataset(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(TestDataset, self).__init__(*args, **kwargs)
super(TestLJSpeechDataset, self).__init__(*args, **kwargs)
self.max_loader_iter = 4
def test_loader(self):
dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata.csv'),
os.path.join(c.data_path, 'wavs'),
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
os.path.join(c.data_path_LJSpeech, 'wavs'),
c.r,
c.sample_rate,
c.text_cleaner,
@ -58,8 +59,8 @@ class TestDataset(unittest.TestCase):
assert mel_input.shape[2] == c.num_mels
def test_padding(self):
dataset = LJSpeechDataset(os.path.join(c.data_path, 'metadata.csv'),
os.path.join(c.data_path, 'wavs'),
dataset = LJSpeechDataset(os.path.join(c.data_path_LJSpeech, 'metadata.csv'),
os.path.join(c.data_path_LJSpeech, 'wavs'),
1,
c.sample_rate,
c.text_cleaner,
@ -141,3 +142,136 @@ class TestDataset(unittest.TestCase):
# check batch conditions
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0
class TestTWEBDataset(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(TestTWEBDataset, self).__init__(*args, **kwargs)
self.max_loader_iter = 4
def test_loader(self):
dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
os.path.join(c.data_path_TWEB, 'wavs'),
c.r,
c.sample_rate,
c.text_cleaner,
c.num_mels,
c.min_level_db,
c.frame_shift_ms,
c.frame_length_ms,
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
)
dataloader = DataLoader(dataset, batch_size=2,
shuffle=True, collate_fn=dataset.collate_fn,
drop_last=True, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
neg_values = text_input[text_input < 0]
check_count = len(neg_values)
assert check_count == 0, \
" !! Negative values in text_input: {}".format(check_count)
# TODO: more assertion here
assert linear_input.shape[0] == c.batch_size
assert mel_input.shape[0] == c.batch_size
assert mel_input.shape[2] == c.num_mels
def test_padding(self):
dataset = TWEBDataset(os.path.join(c.data_path_TWEB, 'transcript.txt'),
os.path.join(c.data_path_TWEB, 'wavs'),
1,
c.sample_rate,
c.text_cleaner,
c.num_mels,
c.min_level_db,
c.frame_shift_ms,
c.frame_length_ms,
c.preemphasis,
c.ref_level_db,
c.num_freq,
c.power
)
# Test for batch size 1
dataloader = DataLoader(dataset, batch_size=1,
shuffle=False, collate_fn=dataset.collate_fn,
drop_last=False, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
# check the last time step to be zero padded
assert mel_input[0, -1].sum() == 0
assert mel_input[0, -2].sum() != 0, "{} -- {}".format(item_idx, i)
assert linear_input[0, -1].sum() == 0
assert linear_input[0, -2].sum() != 0
assert stop_target[0, -1] == 1
assert stop_target[0, -2] == 0
assert stop_target.sum() == 1
assert len(mel_lengths.shape) == 1
assert mel_lengths[0] == mel_input[0].shape[0]
# Test for batch size 2
dataloader = DataLoader(dataset, batch_size=2,
shuffle=False, collate_fn=dataset.collate_fn,
drop_last=False, num_workers=c.num_loader_workers)
for i, data in enumerate(dataloader):
if i == self.max_loader_iter:
break
text_input = data[0]
text_lengths = data[1]
linear_input = data[2]
mel_input = data[3]
mel_lengths = data[4]
stop_target = data[5]
item_idx = data[6]
if mel_lengths[0] > mel_lengths[1]:
idx = 0
else:
idx = 1
# check the first item in the batch
assert mel_input[idx, -1].sum() == 0
assert mel_input[idx, -2].sum() != 0, mel_input
assert linear_input[idx, -1].sum() == 0
assert linear_input[idx, -2].sum() != 0
assert stop_target[idx, -1] == 1
assert stop_target[idx, -2] == 0
assert stop_target[idx].sum() == 1
assert len(mel_lengths.shape) == 1
assert mel_lengths[idx] == mel_input[idx].shape[0]
# check the second itme in the batch
assert mel_input[1-idx, -1].sum() == 0
assert linear_input[1-idx, -1].sum() == 0
assert stop_target[1-idx, -1] == 1
assert len(mel_lengths.shape) == 1
# check batch conditions
assert (mel_input * stop_target.unsqueeze(2)).sum() == 0
assert (linear_input * stop_target.unsqueeze(2)).sum() == 0

View File

@ -1,7 +1,7 @@
{
"num_mels": 80,
"num_freq": 1025,
"sample_rate": 20000,
"sample_rate": 22050,
"frame_length_ms": 50,
"frame_shift_ms": 12.5,
"preemphasis": 0.97,
@ -24,7 +24,8 @@
"num_loader_workers": 4,
"save_step": 200,
"data_path": "/data/shared/KeithIto/LJSpeech-1.0",
"data_path_LJSpeech": "/data/shared/KeithIto/LJSpeech-1.0",
"data_path_TWEB": "/data/shared/BibleSpeech",
"output_path": "result",
"log_dir": "/home/erogol/projects/TTS/logs/"
}