Create a module for the VAD script

pull/1032/head
Edresson 2021-11-21 12:20:35 -03:00 committed by Eren Gölge
parent 390096fe0f
commit 89019d49a2
2 changed files with 160 additions and 146 deletions

View File

@ -1,162 +1,31 @@
# This code is adpated from: https://github.com/wiseman/py-webrtcvad/blob/master/example.py
import argparse
import collections
import contextlib
import glob
import multiprocessing
import os import os
import glob
import pathlib import pathlib
import wave import argparse
import webrtcvad import multiprocessing
from tqdm.contrib.concurrent import process_map from tqdm.contrib.concurrent import process_map
from TTS.utils.vad import read_wave, write_wave, get_vad_speech_segments
def read_wave(path):
"""Reads a .wav file.
Takes the path, and returns (PCM audio data, sample rate).
"""
with contextlib.closing(wave.open(path, "rb")) as wf:
num_channels = wf.getnchannels()
assert num_channels == 1
sample_width = wf.getsampwidth()
assert sample_width == 2
sample_rate = wf.getframerate()
assert sample_rate in (8000, 16000, 32000, 48000)
pcm_data = wf.readframes(wf.getnframes())
return pcm_data, sample_rate
def write_wave(path, audio, sample_rate):
"""Writes a .wav file.
Takes path, PCM audio data, and sample rate.
"""
with contextlib.closing(wave.open(path, "wb")) as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio)
class Frame(object):
"""Represents a "frame" of audio data."""
def __init__(self, _bytes, timestamp, duration):
self.bytes =_bytes
self.timestamp = timestamp
self.duration = duration
def frame_generator(frame_duration_ms, audio, sample_rate):
"""Generates audio frames from PCM audio data.
Takes the desired frame duration in milliseconds, the PCM data, and
the sample rate.
Yields Frames of the requested duration.
"""
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
offset = 0
timestamp = 0.0
duration = (float(n) / sample_rate) / 2.0
while offset + n < len(audio):
yield Frame(audio[offset : offset + n], timestamp, duration)
timestamp += duration
offset += n
def vad_collector(sample_rate, frame_duration_ms, padding_duration_ms, vad, frames):
"""Filters out non-voiced audio frames.
Given a webrtcvad.Vad and a source of audio frames, yields only
the voiced audio.
Uses a padded, sliding window algorithm over the audio frames.
When more than 90% of the frames in the window are voiced (as
reported by the VAD), the collector triggers and begins yielding
audio frames. Then the collector waits until 90% of the frames in
the window are unvoiced to detrigger.
The window is padded at the front and back to provide a small
amount of silence or the beginnings/endings of speech around the
voiced frames.
Arguments:
sample_rate - The audio sample rate, in Hz.
frame_duration_ms - The frame duration in milliseconds.
padding_duration_ms - The amount to pad the window, in milliseconds.
vad - An instance of webrtcvad.Vad.
frames - a source of audio frames (sequence or generator).
Returns: A generator that yields PCM audio data.
"""
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
# We use a deque for our sliding window/ring buffer.
ring_buffer = collections.deque(maxlen=num_padding_frames)
# We have two states: TRIGGERED and NOTTRIGGERED. We start in the
# NOTTRIGGERED state.
triggered = False
voiced_frames = []
for frame in frames:
is_speech = vad.is_speech(frame.bytes, sample_rate)
# sys.stdout.write('1' if is_speech else '0')
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
# If we're NOTTRIGGERED and more than 90% of the frames in
# the ring buffer are voiced frames, then enter the
# TRIGGERED state.
if num_voiced > 0.9 * ring_buffer.maxlen:
triggered = True
# sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,))
# We want to yield all the audio we see from now until
# we are NOTTRIGGERED, but we have to start with the
# audio that's already in the ring buffer.
for f, _ in ring_buffer:
voiced_frames.append(f)
ring_buffer.clear()
else:
# We're in the TRIGGERED state, so collect the audio data
# and add it to the ring buffer.
voiced_frames.append(frame)
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
# If more than 90% of the frames in the ring buffer are
# unvoiced, then enter NOTTRIGGERED and yield whatever
# audio we've collected.
if num_unvoiced > 0.9 * ring_buffer.maxlen:
# sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
triggered = False
yield b"".join([f.bytes for f in voiced_frames])
ring_buffer.clear()
voiced_frames = []
# If we have any leftover voiced audio when we run out of input,
# yield it.
if voiced_frames:
yield b"".join([f.bytes for f in voiced_frames])
def remove_silence(filepath): def remove_silence(filepath):
output_path = filepath.replace(os.path.join(args.input_dir, ""), os.path.join(args.output_dir, "")) output_path = filepath.replace(os.path.join(args.input_dir, ""), os.path.join(args.output_dir, ""))
# ignore if the file exists # ignore if the file exists
if os.path.exists(output_path) and not args.force: if os.path.exists(output_path) and not args.force:
return return
# create all directory structure # create all directory structure
pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True) pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
padding_duration_ms = 300 # default 300 # load wave
audio, sample_rate = read_wave(filepath) audio, sample_rate = read_wave(filepath)
vad = webrtcvad.Vad(int(args.aggressiveness))
frames = frame_generator(30, audio, sample_rate) # get speech segments
frames = list(frames) segments = get_vad_speech_segments(audio, sample_rate, aggressiveness=args.aggressiveness)
segments = vad_collector(sample_rate, 30, padding_duration_ms, vad, frames)
flag = False
segments = list(segments) segments = list(segments)
num_segments = len(segments) num_segments = len(segments)
flag = False
# create the output wave
if num_segments != 0: if num_segments != 0:
for i, segment in reversed(list(enumerate(segments))): for i, segment in reversed(list(enumerate(segments))):
if i >= 1: if i >= 1:
@ -168,8 +37,8 @@ def remove_silence(filepath):
else: else:
if flag: if flag:
segment = segment + concat_segment segment = segment + concat_segment
# print("Saving: ", output_path)
write_wave(output_path, segment, sample_rate) write_wave(output_path, segment, sample_rate)
print(output_path)
return return
else: else:
print("> Just Copying the file to:", output_path) print("> Just Copying the file to:", output_path)
@ -200,7 +69,10 @@ if __name__ == "__main__":
parser.add_argument( parser.add_argument(
"-o", "--output_dir", type=str, default="../VCTK-Corpus-removed-silence", help="Output Dataset dir" "-o", "--output_dir", type=str, default="../VCTK-Corpus-removed-silence", help="Output Dataset dir"
) )
parser.add_argument("-f", "--force", type=bool, default=True, help="Force the replace of exists files") parser.add_argument("-f", "--force",
default=False,
action='store_true',
help='Force the replace of exists files')
parser.add_argument( parser.add_argument(
"-g", "-g",
"--glob", "--glob",

142
TTS/utils/vad.py Normal file
View File

@ -0,0 +1,142 @@
# This code is adpated from: https://github.com/wiseman/py-webrtcvad/blob/master/example.py
import wave
import webrtcvad
import contextlib
import collections
def read_wave(path):
"""Reads a .wav file.
Takes the path, and returns (PCM audio data, sample rate).
"""
with contextlib.closing(wave.open(path, "rb")) as wf:
num_channels = wf.getnchannels()
assert num_channels == 1
sample_width = wf.getsampwidth()
assert sample_width == 2
sample_rate = wf.getframerate()
assert sample_rate in (8000, 16000, 32000, 48000)
pcm_data = wf.readframes(wf.getnframes())
return pcm_data, sample_rate
def write_wave(path, audio, sample_rate):
"""Writes a .wav file.
Takes path, PCM audio data, and sample rate.
"""
with contextlib.closing(wave.open(path, "wb")) as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio)
class Frame(object):
"""Represents a "frame" of audio data."""
def __init__(self, _bytes, timestamp, duration):
self.bytes =_bytes
self.timestamp = timestamp
self.duration = duration
def frame_generator(frame_duration_ms, audio, sample_rate):
"""Generates audio frames from PCM audio data.
Takes the desired frame duration in milliseconds, the PCM data, and
the sample rate.
Yields Frames of the requested duration.
"""
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
offset = 0
timestamp = 0.0
duration = (float(n) / sample_rate) / 2.0
while offset + n < len(audio):
yield Frame(audio[offset : offset + n], timestamp, duration)
timestamp += duration
offset += n
def vad_collector(sample_rate, frame_duration_ms, padding_duration_ms, vad, frames):
"""Filters out non-voiced audio frames.
Given a webrtcvad.Vad and a source of audio frames, yields only
the voiced audio.
Uses a padded, sliding window algorithm over the audio frames.
When more than 90% of the frames in the window are voiced (as
reported by the VAD), the collector triggers and begins yielding
audio frames. Then the collector waits until 90% of the frames in
the window are unvoiced to detrigger.
The window is padded at the front and back to provide a small
amount of silence or the beginnings/endings of speech around the
voiced frames.
Arguments:
sample_rate - The audio sample rate, in Hz.
frame_duration_ms - The frame duration in milliseconds.
padding_duration_ms - The amount to pad the window, in milliseconds.
vad - An instance of webrtcvad.Vad.
frames - a source of audio frames (sequence or generator).
Returns: A generator that yields PCM audio data.
"""
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
# We use a deque for our sliding window/ring buffer.
ring_buffer = collections.deque(maxlen=num_padding_frames)
# We have two states: TRIGGERED and NOTTRIGGERED. We start in the
# NOTTRIGGERED state.
triggered = False
voiced_frames = []
for frame in frames:
is_speech = vad.is_speech(frame.bytes, sample_rate)
# sys.stdout.write('1' if is_speech else '0')
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
# If we're NOTTRIGGERED and more than 90% of the frames in
# the ring buffer are voiced frames, then enter the
# TRIGGERED state.
if num_voiced > 0.9 * ring_buffer.maxlen:
triggered = True
# sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,))
# We want to yield all the audio we see from now until
# we are NOTTRIGGERED, but we have to start with the
# audio that's already in the ring buffer.
for f, _ in ring_buffer:
voiced_frames.append(f)
ring_buffer.clear()
else:
# We're in the TRIGGERED state, so collect the audio data
# and add it to the ring buffer.
voiced_frames.append(frame)
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
# If more than 90% of the frames in the ring buffer are
# unvoiced, then enter NOTTRIGGERED and yield whatever
# audio we've collected.
if num_unvoiced > 0.9 * ring_buffer.maxlen:
# sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
triggered = False
yield b"".join([f.bytes for f in voiced_frames])
ring_buffer.clear()
voiced_frames = []
# If we have any leftover voiced audio when we run out of input,
# yield it.
if voiced_frames:
yield b"".join([f.bytes for f in voiced_frames])
def get_vad_speech_segments(audio, sample_rate, aggressiveness=2, padding_duration_ms=300):
vad = webrtcvad.Vad(int(aggressiveness))
frames = list(frame_generator(30, audio, sample_rate))
segments = vad_collector(sample_rate, 30, padding_duration_ms, vad, frames)
return segments