add hifigan D

pull/422/head
Eren Gölge 2021-04-07 19:19:03 +02:00
parent 13dca6e6b6
commit 7cecd2fb2e
2 changed files with 212 additions and 77 deletions

View File

@ -0,0 +1,212 @@
# adopted from https://github.com/jik876/hifi-gan/blob/master/models.py
import torch
from torch import nn
from torch.nn import functional as F
LRELU_SLOPE = 0.1
class DiscriminatorP(torch.nn.Module):
"""HiFiGAN Periodic Discriminator
Takes every Pth value from the input waveform and applied a stack of convoluations.
Note:
if `period` is 2
`waveform = [1, 2, 3, 4, 5, 6 ...] --> [1, 3, 5 ... ] --> convs -> score, feat`
Args:
x (Tensor): input waveform.
Returns:
[Tensor]: discriminator scores per sample in the batch.
[List[Tensor]]: list of features from each convolutional layer.
Shapes:
x: [B, 1, T]
"""
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
super().__init__()
self.period = period
get_padding = lambda k, d: int((k*d - d)/2)
norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.weight_norm
self.convs = nn.ModuleList([
norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
])
self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
def forward(self, x):
"""
Args:
x (Tensor): input waveform.
Returns:
[Tensor]: discriminator scores per sample in the batch.
[List[Tensor]]: list of features from each convolutional layer.
Shapes:
x: [B, 1, T]
"""
feat = []
# 1d to 2d
b, c, t = x.shape
if t % self.period != 0: # pad first
n_pad = self.period - (t % self.period)
x = F.pad(x, (0, n_pad), "reflect")
t = t + n_pad
x = x.view(b, c, t // self.period, self.period)
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
feat.append(x)
x = self.conv_post(x)
feat.append(x)
x = torch.flatten(x, 1, -1)
return x, feat
class MultiPeriodDiscriminator(torch.nn.Module):
"""HiFiGAN Multi-Period Discriminator (MPD)
Wrapper for the `PeriodDiscriminator` to apply it in different periods.
Periods are suggested to be prime numbers to reduce the overlap between each discriminator.
"""
def __init__(self):
super(MultiPeriodDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorP(2),
DiscriminatorP(3),
DiscriminatorP(5),
DiscriminatorP(7),
DiscriminatorP(11),
])
def forward(self, x):
"""
Args:
x (Tensor): input waveform.
Returns:
[List[Tensor]]: list of scores from each discriminator.
[List[List[Tensor]]]: list of list of features from each discriminator's each convolutional layer.
Shapes:
x: [B, 1, T]
"""
scores = []
feats = []
for _, d in enumerate(self.discriminators):
score, feat = d(x)
scores.append(score)
feats.append(feat)
return scores, feats
class DiscriminatorS(torch.nn.Module):
"""HiFiGAN Scale Discriminator.
It is similar to `MelganDiscriminator` but with a specific architecture explained in the paper.
Args:
use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm.
"""
def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__()
norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.weight_norm
self.convs = nn.ModuleList([
norm_f(nn.Conv1d(1, 128, 15, 1, padding=7)),
norm_f(nn.Conv1d(128, 128, 41, 2, groups=4, padding=20)),
norm_f(nn.Conv1d(128, 256, 41, 2, groups=16, padding=20)),
norm_f(nn.Conv1d(256, 512, 41, 4, groups=16, padding=20)),
norm_f(nn.Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
norm_f(nn.Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
norm_f(nn.Conv1d(1024, 1024, 5, 1, padding=2)),
])
self.conv_post = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1))
def forward(self, x):
"""
Args:
x (Tensor): input waveform.
Returns:
Tensor: discriminator scores.
List[Tensor]: list of features from the convolutiona layers.
"""
feat = []
for l in self.convs:
x = l(x)
x = F.leaky_relu(x, LRELU_SLOPE)
feat.append(x)
x = self.conv_post(x)
feat.append(x)
x = torch.flatten(x, 1, -1)
return x, feat
class MultiScaleDiscriminator(torch.nn.Module):
"""HiFiGAN Multi-Scale Discriminator.
It is similar to `MultiScaleMelganDiscriminator` but specially tailored for HiFiGAN as in the paper.
"""
def __init__(self):
super(MultiScaleDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([
DiscriminatorS(use_spectral_norm=True),
DiscriminatorS(),
DiscriminatorS(),
])
self.meanpools = nn.ModuleList([
nn.AvgPool1d(4, 2, padding=2),
nn.AvgPool1d(4, 2, padding=2)
])
def forward(self, x):
"""
Args:
x (Tensor): input waveform.
Returns:
List[Tensor]: discriminator scores.
List[List[Tensor]]: list of list of features from each layers of each discriminator.
"""
scores = []
feats = []
for i, d in enumerate(self.discriminators):
if i != 0:
x = self.meanpools[i-1](x)
score, feat = d(x)
scores.append(score)
feats.append(feat)
return scores, feats
class HifiganDiscriminator(nn.Module):
"""HiFiGAN discriminator wrapping MPD and MSD.
"""
def __init__(self):
super().__init__()
self.mpd = MultiPeriodDiscriminator()
self.msd = MultiScaleDiscriminator()
def forward(self, x):
"""
Args:
x (Tensor): input waveform.
Returns:
List[Tensor]: discriminator scores.
List[List[Tensor]]: list of list of features from each layers of each discriminator.
"""
scores, feats = self.msd(x)
scores_, feats_ = self.mpd(x)
scores += scores_
feats += feats_
return scores, feats

View File

@ -1,77 +0,0 @@
from torch import nn
import torch.nn.functional as F
from TTS.vocoder.models.melgan_multiscale_discriminator import MelganMultiscaleDiscriminator
class PeriodDiscriminator(nn.Module):
def __init__(self, period):
super(PeriodDiscriminator, self).__init__()
layer = []
self.period = period
inp = 1
for l in range(4):
out = int(2**(5 + l + 1))
layer += [
nn.utils.weight_norm(
nn.Conv2d(inp, out, kernel_size=(5, 1), stride=(3, 1))),
nn.LeakyReLU(0.2)
]
inp = out
self.layer = nn.Sequential(*layer)
self.output = nn.Sequential(
nn.utils.weight_norm(nn.Conv2d(out, 1024, kernel_size=(5, 1))),
nn.LeakyReLU(0.2),
nn.utils.weight_norm(nn.Conv2d(1024, 1, kernel_size=(3, 1))))
def forward(self, x):
batch_size = x.shape[0]
pad = self.period - (x.shape[-1] % self.period)
x = F.pad(x, (0, pad))
y = x.view(batch_size, -1, self.period).contiguous()
y = y.unsqueeze(1)
out1 = self.layer(y)
return self.output(out1)
class HifiDiscriminator(nn.Module):
def __init__(self,
periods=[2, 3, 5, 7, 11],
in_channels=1,
out_channels=1,
num_scales=3,
kernel_sizes=(5, 3),
base_channels=64,
max_channels=1024,
downsample_factors=(2, 2, 4, 4),
pooling_kernel_size=4,
pooling_stride=2,
pooling_padding=1):
super().__init__()
self.discriminators = nn.ModuleList([
PeriodDiscriminator(periods[0]),
PeriodDiscriminator(periods[1]),
PeriodDiscriminator(periods[2]),
PeriodDiscriminator(periods[3]),
PeriodDiscriminator(periods[4])
])
self.msd = MelganMultiscaleDiscriminator(
in_channels=in_channels,
out_channels=out_channels,
num_scales=num_scales,
kernel_sizes=kernel_sizes,
base_channels=base_channels,
max_channels=max_channels,
downsample_factors=downsample_factors,
pooling_kernel_size=pooling_kernel_size,
pooling_stride=pooling_stride,
pooling_padding=pooling_padding,
groups_denominator=32,
max_groups=16)
def forward(self, x):
scores, feats = self.msd(x)
for key, disc in enumerate(self.discriminators):
score = disc(x)
scores.append(score)
return scores, feats