mirror of https://github.com/coqui-ai/TTS.git
update the readme
parent
af2955fa19
commit
79663bc944
50
README.md
50
README.md
|
@ -48,6 +48,7 @@ Please use our dedicated channels for questions and discussion. Help is much mor
|
|||
| 💻 **Docker Image** | [Repository by @synesthesiam](https://github.com/synesthesiam/docker-coqui-aitts)|
|
||||
| 🖥️ **Demo Server** | [TTS/server](https://github.com/coqui-ai/TTS/tree/master/TTS/server)|
|
||||
| 🤖 **Synthesize speech** | [TTS/README.md](https://github.com/coqui-ai/TTS#example-synthesizing-speech-on-terminal-using-the-released-models)|
|
||||
| 🛠️ **Implementing a New Model** | [TTS/Wiki][https://github.com/coqui-ai/TTS/wiki/Implementing-a-New-Model-in-%F0%9F%90%B8TTS]|
|
||||
|
||||
## 🥇 TTS Performance
|
||||
<p align="center"><img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/TTS-performance.png" width="800" /></p>
|
||||
|
@ -176,6 +177,7 @@ Some of the public datasets that we successfully applied 🐸TTS:
|
|||
- [Spanish](https://drive.google.com/file/d/1Sm_zyBo67XHkiFhcRSQ4YaHPYM0slO_e/view?usp=sharing) - thx! @carlfm01
|
||||
|
||||
## Example: Synthesizing Speech on Terminal Using the Released Models.
|
||||
<img src="images/tts_cli.gif"/>
|
||||
|
||||
After the installation, 🐸TTS provides a CLI interface for synthesizing speech using pre-trained models. You can either use your own model or the release models under 🐸TTS.
|
||||
|
||||
|
@ -185,7 +187,15 @@ Listing released 🐸TTS models.
|
|||
tts --list_models
|
||||
```
|
||||
|
||||
Run a tts and a vocoder model from the released model list. (Simply copy and paste the full model names from the list as arguments for the command below.)
|
||||
Run a TTS model, from the release models list, with its default vocoder. (Simply copy and paste the full model names from the list as arguments for the command below.)
|
||||
|
||||
```bash
|
||||
tts --text "Text for TTS" \
|
||||
--model_name "<type>/<language>/<dataset>/<model_name>" \
|
||||
--out_path folder/to/save/output.wav
|
||||
```
|
||||
|
||||
Run a tts and a vocoder model from the released model list. Note that not every vocoder is compatible with every TTS model.
|
||||
|
||||
```bash
|
||||
tts --text "Text for TTS" \
|
||||
|
@ -214,8 +224,46 @@ tts --text "Text for TTS" \
|
|||
--vocoder_config_path path/to/vocoder_config.json
|
||||
```
|
||||
|
||||
Run a multi-speaker TTS model from the released models list.
|
||||
|
||||
```bash
|
||||
tts --model_name "<type>/<language>/<dataset>/<model_name>" --list_speaker_idxs # list the possible speaker IDs.
|
||||
tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx "<speaker_id>"
|
||||
```
|
||||
|
||||
**Note:** You can use ```./TTS/bin/synthesize.py``` if you prefer running ```tts``` from the TTS project folder.
|
||||
|
||||
## Example: Using the Demo Server for Synthesizing Speech
|
||||
|
||||
<!-- <img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/demo_server.gif" height="56"/> -->
|
||||
<img src="images/demo_server.gif"/>
|
||||
|
||||
You can boot up a demo 🐸TTS server to run inference with your models. Note that the server is not optimized for performance
|
||||
but gives you an easy way to interact with the models.
|
||||
|
||||
The demo server provides pretty much the same interface as the CLI command.
|
||||
|
||||
```bash
|
||||
tts-server -h # see the help
|
||||
tts-server --list_models # list the available models.
|
||||
```
|
||||
|
||||
Run a TTS model, from the release models list, with its default vocoder.
|
||||
If the model you choose is a multi-speaker TTS model, you can select different speakers on the Web interface and synthesize
|
||||
speech.
|
||||
|
||||
```bash
|
||||
tts-server --model_name "<type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
|
||||
Run a TTS and a vocoder model from the released model list. Note that not every vocoder is compatible with every TTS model.
|
||||
|
||||
```bash
|
||||
tts-server --model_name "<type>/<language>/<dataset>/<model_name>" \
|
||||
--vocoder_name "<type>/<language>/<dataset>/<model_name>"
|
||||
```
|
||||
|
||||
|
||||
## Example: Training and Fine-tuning LJ-Speech Dataset
|
||||
Here you can find a [CoLab](https://gist.github.com/erogol/97516ad65b44dbddb8cd694953187c5b) notebook for a hands-on example, training LJSpeech. Or you can manually follow the guideline below.
|
||||
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 94 KiB |
Binary file not shown.
After Width: | Height: | Size: 166 KiB |
Loading…
Reference in New Issue