mirror of https://github.com/coqui-ai/TTS.git
Merge pull request #3103 from coqui-ai/fix_xttsv1.1_again
Second round of issue fixing for XTTS v1.1pull/3115/head
commit
788959d720
|
@ -483,13 +483,10 @@ class VoiceBpeTokenizer:
|
|||
if lang == "zh-cn":
|
||||
txt = chinese_transliterate(txt)
|
||||
elif lang == "ja":
|
||||
assert txt[:4] == "[ja]", "Japanese speech should start with the [ja] token."
|
||||
txt = txt[4:]
|
||||
if self.katsu is None:
|
||||
import cutlet
|
||||
self.katsu = cutlet.Cutlet()
|
||||
txt = japanese_cleaners(txt, self.katsu)
|
||||
txt = "[ja]" + txt
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
return txt
|
||||
|
@ -497,6 +494,7 @@ class VoiceBpeTokenizer:
|
|||
def encode(self, txt, lang):
|
||||
if self.preprocess:
|
||||
txt = self.preprocess_text(txt, lang)
|
||||
txt = f"[{lang}]{txt}"
|
||||
txt = txt.replace(" ", "[SPACE]")
|
||||
return self.tokenizer.encode(txt).ids
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@ from dataclasses import dataclass
|
|||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
import librosa
|
||||
from coqpit import Coqpit
|
||||
|
||||
from TTS.tts.layers.tortoise.audio_utils import denormalize_tacotron_mel, wav_to_univnet_mel
|
||||
|
@ -21,34 +22,6 @@ from TTS.utils.io import load_fsspec
|
|||
init_stream_support()
|
||||
|
||||
|
||||
def load_audio(audiopath, sr=22050):
|
||||
"""
|
||||
Load an audio file from disk and resample it to the specified sampling rate.
|
||||
|
||||
Args:
|
||||
audiopath (str): Path to the audio file.
|
||||
sr (int): Target sampling rate.
|
||||
|
||||
Returns:
|
||||
Tensor: Audio waveform tensor with shape (1, T), where T is the number of samples.
|
||||
"""
|
||||
audio, sampling_rate = torchaudio.load(audiopath)
|
||||
|
||||
if len(audio.shape) > 1:
|
||||
if audio.shape[0] < 5:
|
||||
audio = audio[0]
|
||||
else:
|
||||
assert audio.shape[1] < 5
|
||||
audio = audio[:, 0]
|
||||
|
||||
if sampling_rate != sr:
|
||||
resampler = torchaudio.transforms.Resample(sampling_rate, sr)
|
||||
audio = resampler(audio)
|
||||
|
||||
audio = audio.clamp_(-1, 1)
|
||||
return audio.unsqueeze(0)
|
||||
|
||||
|
||||
def wav_to_mel_cloning(
|
||||
wav, mel_norms_file="../experiments/clips_mel_norms.pth", mel_norms=None, device=torch.device("cpu")
|
||||
):
|
||||
|
@ -376,7 +349,7 @@ class Xtts(BaseTTS):
|
|||
return next(self.parameters()).device
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_gpt_cond_latents(self, audio_path: str, length: int = 3):
|
||||
def get_gpt_cond_latents(self, audio, sr, length: int = 3):
|
||||
"""Compute the conditioning latents for the GPT model from the given audio.
|
||||
|
||||
Args:
|
||||
|
@ -384,24 +357,21 @@ class Xtts(BaseTTS):
|
|||
length (int): Length of the audio in seconds. Defaults to 3.
|
||||
"""
|
||||
|
||||
audio = load_audio(audio_path)
|
||||
audio = audio[:, : 22050 * length]
|
||||
mel = wav_to_mel_cloning(audio, mel_norms=self.mel_stats.cpu())
|
||||
audio_22k = torchaudio.functional.resample(audio, sr, 22050)
|
||||
audio_22k = audio_22k[:, : 22050 * length]
|
||||
mel = wav_to_mel_cloning(audio_22k, mel_norms=self.mel_stats.cpu())
|
||||
cond_latent = self.gpt.get_style_emb(mel.to(self.device))
|
||||
return cond_latent.transpose(1, 2)
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_diffusion_cond_latents(
|
||||
self,
|
||||
audio_path,
|
||||
):
|
||||
def get_diffusion_cond_latents(self, audio, sr):
|
||||
from math import ceil
|
||||
|
||||
diffusion_conds = []
|
||||
CHUNK_SIZE = 102400
|
||||
audio = load_audio(audio_path, 24000)
|
||||
for chunk in range(ceil(audio.shape[1] / CHUNK_SIZE)):
|
||||
current_sample = audio[:, chunk * CHUNK_SIZE : (chunk + 1) * CHUNK_SIZE]
|
||||
audio_24k = torchaudio.functional.resample(audio, sr, 24000)
|
||||
for chunk in range(ceil(audio_24k.shape[1] / CHUNK_SIZE)):
|
||||
current_sample = audio_24k[:, chunk * CHUNK_SIZE : (chunk + 1) * CHUNK_SIZE]
|
||||
current_sample = pad_or_truncate(current_sample, CHUNK_SIZE)
|
||||
cond_mel = wav_to_univnet_mel(
|
||||
current_sample.to(self.device),
|
||||
|
@ -414,27 +384,38 @@ class Xtts(BaseTTS):
|
|||
return diffusion_latent
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_speaker_embedding(self, audio_path):
|
||||
audio = load_audio(audio_path, self.hifigan_decoder.speaker_encoder_audio_config["sample_rate"])
|
||||
speaker_embedding = (
|
||||
self.hifigan_decoder.speaker_encoder.forward(audio.to(self.device), l2_norm=True)
|
||||
.unsqueeze(-1)
|
||||
.to(self.device)
|
||||
)
|
||||
return speaker_embedding
|
||||
|
||||
def get_speaker_embedding(self, audio, sr):
|
||||
audio_16k = torchaudio.functional.resample(audio, sr, 16000)
|
||||
return self.hifigan_decoder.speaker_encoder.forward(
|
||||
audio_16k.to(self.device), l2_norm=True
|
||||
).unsqueeze(-1).to(self.device)
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_conditioning_latents(
|
||||
self,
|
||||
audio_path,
|
||||
gpt_cond_len=3,
|
||||
):
|
||||
gpt_cond_len=6,
|
||||
max_ref_length=10,
|
||||
librosa_trim_db=None,
|
||||
sound_norm_refs=False,
|
||||
):
|
||||
speaker_embedding = None
|
||||
diffusion_cond_latents = None
|
||||
if self.args.use_hifigan:
|
||||
speaker_embedding = self.get_speaker_embedding(audio_path)
|
||||
|
||||
audio, sr = torchaudio.load(audio_path)
|
||||
audio = audio[:, : sr * max_ref_length].to(self.device)
|
||||
if audio.shape[0] > 1:
|
||||
audio = audio.mean(0, keepdim=True)
|
||||
if sound_norm_refs:
|
||||
audio = (audio / torch.abs(audio).max()) * 0.75
|
||||
if librosa_trim_db is not None:
|
||||
audio = librosa.effects.trim(audio, top_db=librosa_trim_db)[0]
|
||||
|
||||
if self.args.use_hifigan or self.args.use_ne_hifigan:
|
||||
speaker_embedding = self.get_speaker_embedding(audio, sr)
|
||||
else:
|
||||
diffusion_cond_latents = self.get_diffusion_cond_latents(audio_path)
|
||||
gpt_cond_latents = self.get_gpt_cond_latents(audio_path, length=gpt_cond_len) # [1, 1024, T]
|
||||
diffusion_cond_latents = self.get_diffusion_cond_latents(audio, sr)
|
||||
gpt_cond_latents = self.get_gpt_cond_latents(audio, sr, length=gpt_cond_len) # [1, 1024, T]
|
||||
return gpt_cond_latents, diffusion_cond_latents, speaker_embedding
|
||||
|
||||
def synthesize(self, text, config, speaker_wav, language, **kwargs):
|
||||
|
@ -494,7 +475,7 @@ class Xtts(BaseTTS):
|
|||
repetition_penalty=2.0,
|
||||
top_k=50,
|
||||
top_p=0.85,
|
||||
gpt_cond_len=4,
|
||||
gpt_cond_len=6,
|
||||
do_sample=True,
|
||||
# Decoder inference
|
||||
decoder_iterations=100,
|
||||
|
@ -531,7 +512,7 @@ class Xtts(BaseTTS):
|
|||
(aka boring) outputs. Defaults to 0.8.
|
||||
|
||||
gpt_cond_len: (int) Length of the audio used for cloning. If audio is shorter, then audio length is used
|
||||
else the first `gpt_cond_len` secs is used. Defaults to 3 seconds.
|
||||
else the first `gpt_cond_len` secs is used. Defaults to 6 seconds.
|
||||
|
||||
decoder_iterations: (int) Number of diffusion steps to perform. [0,4000]. More steps means the network has
|
||||
more chances to iteratively refine the output, which should theoretically mean a higher quality output.
|
||||
|
@ -610,7 +591,7 @@ class Xtts(BaseTTS):
|
|||
decoder="hifigan",
|
||||
**hf_generate_kwargs,
|
||||
):
|
||||
text = f"[{language}]{text.strip().lower()}"
|
||||
text = text.strip().lower()
|
||||
text_tokens = torch.IntTensor(self.tokenizer.encode(text, lang=language)).unsqueeze(0).to(self.device)
|
||||
|
||||
assert (
|
||||
|
@ -722,7 +703,7 @@ class Xtts(BaseTTS):
|
|||
assert hasattr(
|
||||
self, "hifigan_decoder"
|
||||
), "`inference_stream` requires use_hifigan to be set to true in the config.model_args, diffusion is too slow to stream."
|
||||
text = f"[{language}]{text.strip().lower()}"
|
||||
text = text.strip().lower()
|
||||
text_tokens = torch.IntTensor(self.tokenizer.encode(text, lang=language)).unsqueeze(0).to(self.device)
|
||||
|
||||
fake_inputs = self.gpt.compute_embeddings(
|
||||
|
|
Loading…
Reference in New Issue