mirror of https://github.com/coqui-ai/TTS.git
tacotrongst test + test fixes
parent
89918c6e53
commit
77bfb881d7
|
@ -95,14 +95,14 @@ class Tacotron2(TacotronAbstract):
|
||||||
if self.num_speakers > 1:
|
if self.num_speakers > 1:
|
||||||
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
|
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
|
||||||
embedded_speakers = embedded_speakers.repeat(1, encoder_outputs.size(1), 1)
|
embedded_speakers = embedded_speakers.repeat(1, encoder_outputs.size(1), 1)
|
||||||
if hasattr(self, 'gst'):
|
if self.gst:
|
||||||
# B x gst_dim
|
# B x gst_dim
|
||||||
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, mel_specs)
|
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, mel_specs)
|
||||||
encoder_outputs = torch.cat([encoder_outputs, embedded_gst, embedded_speakers], dim=-1)
|
encoder_outputs = torch.cat([encoder_outputs, embedded_gst, embedded_speakers], dim=-1)
|
||||||
else:
|
else:
|
||||||
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
|
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
|
||||||
else:
|
else:
|
||||||
if hasattr(self, 'gst'):
|
if self.gst:
|
||||||
# B x gst_dim
|
# B x gst_dim
|
||||||
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, mel_specs)
|
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, mel_specs)
|
||||||
encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1)
|
encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1)
|
||||||
|
@ -140,14 +140,14 @@ class Tacotron2(TacotronAbstract):
|
||||||
if self.num_speakers > 1:
|
if self.num_speakers > 1:
|
||||||
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
|
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
|
||||||
embedded_speakers = embedded_speakers.repeat(1, encoder_outputs.size(1), 1)
|
embedded_speakers = embedded_speakers.repeat(1, encoder_outputs.size(1), 1)
|
||||||
if hasattr(self, 'gst'):
|
if self.gst:
|
||||||
# B x gst_dim
|
# B x gst_dim
|
||||||
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
|
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
|
||||||
encoder_outputs = torch.cat([encoder_outputs, embedded_gst, embedded_speakers], dim=-1)
|
encoder_outputs = torch.cat([encoder_outputs, embedded_gst, embedded_speakers], dim=-1)
|
||||||
else:
|
else:
|
||||||
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
|
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
|
||||||
else:
|
else:
|
||||||
if hasattr(self, 'gst'):
|
if self.gst:
|
||||||
# B x gst_dim
|
# B x gst_dim
|
||||||
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
|
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
|
||||||
encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1)
|
encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1)
|
||||||
|
@ -170,14 +170,14 @@ class Tacotron2(TacotronAbstract):
|
||||||
if self.num_speakers > 1:
|
if self.num_speakers > 1:
|
||||||
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
|
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
|
||||||
embedded_speakers = embedded_speakers.repeat(1, encoder_outputs.size(1), 1)
|
embedded_speakers = embedded_speakers.repeat(1, encoder_outputs.size(1), 1)
|
||||||
if hasattr(self, 'gst'):
|
if self.gst:
|
||||||
# B x gst_dim
|
# B x gst_dim
|
||||||
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
|
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
|
||||||
encoder_outputs = torch.cat([encoder_outputs, embedded_gst, embedded_speakers], dim=-1)
|
encoder_outputs = torch.cat([encoder_outputs, embedded_gst, embedded_speakers], dim=-1)
|
||||||
else:
|
else:
|
||||||
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
|
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
|
||||||
else:
|
else:
|
||||||
if hasattr(self, 'gst'):
|
if self.gst:
|
||||||
# B x gst_dim
|
# B x gst_dim
|
||||||
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
|
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
|
||||||
encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1)
|
encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1)
|
||||||
|
|
|
@ -99,3 +99,4 @@
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -75,6 +75,62 @@ class TacotronTrainTest(unittest.TestCase):
|
||||||
count, param.shape, param, param_ref)
|
count, param.shape, param, param_ref)
|
||||||
count += 1
|
count += 1
|
||||||
|
|
||||||
|
|
||||||
|
class TacotronGSTTrainTest(unittest.TestCase):
|
||||||
|
def test_train_step(self):
|
||||||
|
input_dummy = torch.randint(0, 24, (8, 128)).long().to(device)
|
||||||
|
input_lengths = torch.randint(100, 128, (8, )).long().to(device)
|
||||||
|
input_lengths = torch.sort(input_lengths, descending=True)[0]
|
||||||
|
mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||||
|
mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device)
|
||||||
|
mel_lengths = torch.randint(20, 30, (8, )).long().to(device)
|
||||||
|
mel_lengths[0] = 30
|
||||||
|
stop_targets = torch.zeros(8, 30, 1).float().to(device)
|
||||||
|
speaker_ids = torch.randint(0, 5, (8, )).long().to(device)
|
||||||
|
|
||||||
|
for idx in mel_lengths:
|
||||||
|
stop_targets[:, int(idx.item()):, 0] = 1.0
|
||||||
|
|
||||||
|
stop_targets = stop_targets.view(input_dummy.shape[0],
|
||||||
|
stop_targets.size(1) // c.r, -1)
|
||||||
|
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze()
|
||||||
|
|
||||||
|
criterion = MSELossMasked(seq_len_norm=False).to(device)
|
||||||
|
criterion_st = nn.BCEWithLogitsLoss().to(device)
|
||||||
|
model = Tacotron2(num_chars=24,
|
||||||
|
gst=True,
|
||||||
|
r=c.r,
|
||||||
|
num_speakers=5).to(device)
|
||||||
|
model.train()
|
||||||
|
model_ref = copy.deepcopy(model)
|
||||||
|
count = 0
|
||||||
|
for param, param_ref in zip(model.parameters(),
|
||||||
|
model_ref.parameters()):
|
||||||
|
assert (param - param_ref).sum() == 0, param
|
||||||
|
count += 1
|
||||||
|
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
||||||
|
for i in range(5):
|
||||||
|
mel_out, mel_postnet_out, align, stop_tokens = model.forward(
|
||||||
|
input_dummy, input_lengths, mel_spec, mel_lengths, speaker_ids)
|
||||||
|
assert torch.sigmoid(stop_tokens).data.max() <= 1.0
|
||||||
|
assert torch.sigmoid(stop_tokens).data.min() >= 0.0
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss = criterion(mel_out, mel_spec, mel_lengths)
|
||||||
|
stop_loss = criterion_st(stop_tokens, stop_targets)
|
||||||
|
loss = loss + criterion(mel_postnet_out, mel_postnet_spec, mel_lengths) + stop_loss
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
# check parameter changes
|
||||||
|
count = 0
|
||||||
|
for param, param_ref in zip(model.parameters(),
|
||||||
|
model_ref.parameters()):
|
||||||
|
# ignore pre-higway layer since it works conditional
|
||||||
|
# if count not in [145, 59]:
|
||||||
|
assert (param != param_ref).any(
|
||||||
|
), "param {} with shape {} not updated!! \n{}\n{}".format(
|
||||||
|
count, param.shape, param, param_ref)
|
||||||
|
count += 1
|
||||||
|
|
||||||
class TacotronGSTTrainTest(unittest.TestCase):
|
class TacotronGSTTrainTest(unittest.TestCase):
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def test_train_step():
|
def test_train_step():
|
||||||
|
|
Loading…
Reference in New Issue