mirror of https://github.com/coqui-ai/TTS.git
readme update
parent
613339d144
commit
74f50c91af
43
README.md
43
README.md
|
@ -84,22 +84,23 @@ Or you can use ```requirements.txt``` to install the requirements only.
|
|||
|
||||
### Directory Structure
|
||||
```
|
||||
|- bin/ (folder for all the executables.)
|
||||
|- train*.py (train your target model.)
|
||||
|- distribute.py (train your TTS model using Multiple GPUs.)
|
||||
|- compute_statistics.py (compute dataset statistics for normalization.)
|
||||
|- convert*.py (convert target torch model to TF.)
|
||||
|- notebooks/ (Jupyter Notebooks for model evaluation, parameter selection and data analysis.)
|
||||
|- utils/ (common utilities.)
|
||||
|- tts/ (text to speech models)
|
||||
|- layers/ (model layer definitions)
|
||||
|- models/ (model definitions)
|
||||
|- tf/ (Tensorflow 2 utilities and model implementations)
|
||||
|- utils/ (model specific utilities.)
|
||||
|- speaker_encoder/ (Speaker Encoder models.)
|
||||
|- (same)
|
||||
|- vocoder/ (Vocoder models.)
|
||||
|- (same)
|
||||
|- TTS
|
||||
|- bin/ (folder for all the executables.)
|
||||
|- train*.py (train your target model.)
|
||||
|- distribute.py (train your TTS model using Multiple GPUs.)
|
||||
|- compute_statistics.py (compute dataset statistics for normalization.)
|
||||
|- convert*.py (convert target torch model to TF.)
|
||||
|- tts/ (text to speech models)
|
||||
|- layers/ (model layer definitions)
|
||||
|- models/ (model definitions)
|
||||
|- tf/ (Tensorflow 2 utilities and model implementations)
|
||||
|- utils/ (model specific utilities.)
|
||||
|- speaker_encoder/ (Speaker Encoder models.)
|
||||
|- (same)
|
||||
|- vocoder/ (Vocoder models.)
|
||||
|- (same)
|
||||
```
|
||||
|
||||
### Docker
|
||||
|
@ -110,10 +111,10 @@ docker build -t mozilla-tts .
|
|||
nvidia-docker run -it --rm -p 5002:5002 mozilla-tts
|
||||
```
|
||||
|
||||
## Checkpoints and Audio Samples
|
||||
## Release Models
|
||||
Please visit [our wiki.](https://github.com/mozilla/TTS/wiki/Released-Models)
|
||||
|
||||
## Example Model Outputs
|
||||
## Sample Model Output
|
||||
Below you see Tacotron model state after 16K iterations with batch-size 32 with LJSpeech dataset.
|
||||
|
||||
> "Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase the grey matter in the parts of the brain responsible for emotional regulation and learning."
|
||||
|
@ -151,15 +152,19 @@ tail -n 1100 metadata_shuf.csv > metadata_val.csv
|
|||
|
||||
To train a new model, you need to define your own ```config.json``` file (check the example) and call with the command below. You also set the model architecture in ```config.json```.
|
||||
|
||||
```train.py --config_path config.json```
|
||||
```python TTS/bin/train.py --config_path TTS/tts/configs/config.json```
|
||||
|
||||
To fine-tune a model, use ```--restore_path```.
|
||||
|
||||
```train.py --config_path config.json --restore_path /path/to/your/model.pth.tar```
|
||||
```python TTS/bin/train.py --config_path TTS/tts/configs/config.json --restore_path /path/to/your/model.pth.tar```
|
||||
|
||||
To continue an old training run, use ```--continue_path```.
|
||||
|
||||
```python TTS/bin/train.py --continue_path /path/to/your/run_folder/```
|
||||
|
||||
For multi-GPU training use ```distribute.py```. It enables process based multi-GPU training where each process uses a single GPU.
|
||||
|
||||
```CUDA_VISIBLE_DEVICES="0,1,4" distribute.py --config_path config.json```
|
||||
```CUDA_VISIBLE_DEVICES="0,1,4" TTS/bin/distribute.py --config_path TTS/tts/configs/config.json```
|
||||
|
||||
Each run creates a new output folder and ```config.json``` is copied under this folder.
|
||||
|
||||
|
|
Loading…
Reference in New Issue