diff --git a/.travis.yml b/.travis.yml index e2f77491..645f9861 100644 --- a/.travis.yml +++ b/.travis.yml @@ -11,7 +11,7 @@ matrix: env: TEST_SUITE="lint" - name: "Unit tests" python: "3.6" - install: pip install --quiet -r requirements.txt + install: pip install --quiet -r requirements_tests.txt env: TEST_SUITE="unittest" script: ./.travis/script diff --git a/README.md b/README.md index 19d7fa24..4adae507 100644 --- a/README.md +++ b/README.md @@ -14,11 +14,18 @@ If you are new, you can also find [here](http://www.erogol.com/text-speech-deep- [Details...](https://github.com/mozilla/TTS/wiki/Mean-Opinion-Score-Results) -## Utilities under this Project -- Deep Learning based Text2Speech model. -- ```dataset_analysis```: Tools to curate a Text2Speech dataset. -- ```speaker_encoder```: Speaker Encoder model computing embedding vectors for voice files. -- ```server```: Basic server implementation with packaging. +## Features +- High performance Text2Speech models on Torch and Tensorflow 2.0. +- High performance Speaker Encoder to compute speaker embeddings efficiently. +- Integration with various Neural Vocoders (PWGAN, MelGAN, WaveRNN) +- Released trained models. +- Efficient training codes for PyTorch. (soon for Tensorflow 2.0) +- Codes to convert Torch models to Tensorflow 2.0. +- Detailed training anlaysis on console and Tensorboard. +- Tools to curate Text2Speech datasets under```dataset_analysis```. +- Demo server for model testing. +- Notebooks for extensive model benchmarking. +- Modular (but not too much) code base enabling easy testing for new ideas. ## Requirements and Installation Highly recommended to use [miniconda](https://conda.io/miniconda.html) for easier installation. diff --git a/config.json b/config.json index da3fe286..03907fb0 100644 --- a/config.json +++ b/config.json @@ -1,5 +1,5 @@ { - "model": "Tacotron2", + "model": "Tacotron2", "run_name": "ljspeech", "run_description": "tacotron2", @@ -11,12 +11,12 @@ "hop_length": 256, // stft window hop-lengh in ms. "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. - + // Audio processing parameters "sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. "preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. "ref_level_db": 20, // reference level db, theoretically 20db is the sound of air. - + // Silence trimming "do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true) "trim_db": 60, // threshold for timming silence. Set this according to your dataset. @@ -26,7 +26,7 @@ "griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation. // MelSpectrogram parameters - "num_mels": 80, // size of the mel spec frame. + "num_mels": 80, // size of the mel spec frame. "mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!! "mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!! @@ -34,7 +34,7 @@ "signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params. "min_level_db": -100, // lower bound for normalization "symmetric_norm": true, // move normalization to range [-1, 1] - "max_norm": 1.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] + "max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm] "clip_norm": true, // clip normalized values into the range. "stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored }, @@ -50,7 +50,7 @@ // "punctuations":"!'(),-.:;? ", // "phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ" // }, - + // DISTRIBUTED TRAINING "distributed":{ "backend": "nccl", @@ -61,8 +61,8 @@ // TRAINING "batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. - "eval_batch_size":16, - "r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. + "eval_batch_size":16, + "r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. "gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed. "loss_masking": true, // enable / disable loss masking against the sequence padding. "ga_alpha": 10.0, // weight for guided attention loss. If > 0, guided attention is enabled. @@ -74,40 +74,40 @@ // OPTIMIZER "noam_schedule": false, // use noam warmup and lr schedule. - "grad_clip": 1.0, // upper limit for gradients for clipping. + "grad_clip": 1.0, // upper limit for gradients for clipping. "epochs": 1000, // total number of epochs to train. "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. - "wd": 0.000001, // Weight decay weight. + "wd": 0.000001, // Weight decay weight. "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" - "seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths. - + "seq_len_norm": false, // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths. + // TACOTRON PRENET - "memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame. + "memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame. "prenet_type": "original", // "original" or "bn". - "prenet_dropout": true, // enable/disable dropout at prenet. + "prenet_dropout": true, // enable/disable dropout at prenet. // ATTENTION "attention_type": "original", // 'original' or 'graves' "attention_heads": 4, // number of attention heads (only for 'graves') "attention_norm": "sigmoid", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron. "windowing": false, // Enables attention windowing. Used only in eval mode. - "use_forward_attn": false, // if it uses forward attention. In general, it aligns faster. + "use_forward_attn": false, // if it uses forward attention. In general, it aligns faster. "forward_attn_mask": false, // Additional masking forcing monotonicity only in eval mode. "transition_agent": false, // enable/disable transition agent of forward attention. - "location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default. + "location_attn": true, // enable_disable location sensitive attention. It is enabled for TACOTRON by default. "bidirectional_decoder": false, // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset. // STOPNET - "stopnet": true, // Train stopnet predicting the end of synthesis. - "separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER. + "stopnet": true, // Train stopnet predicting the end of synthesis. + "separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER. // TENSORBOARD and LOGGING "print_step": 25, // Number of steps to log traning on console. - "print_eval": false, // If True, it prints loss values in evalulation. + "print_eval": false, // If True, it prints loss values in evalulation. "save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints. "checkpoint": true, // If true, it saves checkpoints per "save_step" - "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. - + "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + // DATA LOADING "text_cleaner": "phoneme_cleaners", "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. @@ -119,10 +119,10 @@ // PATHS "output_path": "/home/erogol/Models/LJSpeech/", - + // PHONEMES - "phoneme_cache_path": "mozilla_us_phonemes_3", // phoneme computation is slow, therefore, it caches results in the given folder. - "use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation. + "phoneme_cache_path": "/media/erogol/data_ssd2/mozilla_us_phonemes_3", // phoneme computation is slow, therefore, it caches results in the given folder. + "use_phonemes": false, // use phonemes instead of raw characters. It is suggested for better pronounciation. "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages // MULTI-SPEAKER and GST diff --git a/distribute.py b/distribute.py index a5fdb373..b0fc8b07 100644 --- a/distribute.py +++ b/distribute.py @@ -9,7 +9,7 @@ import torch.distributed as dist from torch.utils.data.sampler import Sampler from torch.autograd import Variable from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors -from TTS.utils.generic_utils import load_config, create_experiment_folder +from TTS.utils.generic_utils import create_experiment_folder class DistributedSampler(Sampler): diff --git a/layers/common_layers.py b/layers/common_layers.py index 8b7ed125..b7d02c2d 100644 --- a/layers/common_layers.py +++ b/layers/common_layers.py @@ -33,7 +33,7 @@ class LinearBN(nn.Module): super(LinearBN, self).__init__() self.linear_layer = torch.nn.Linear( in_features, out_features, bias=bias) - self.bn = nn.BatchNorm1d(out_features) + self.batch_normalization = nn.BatchNorm1d(out_features, momentum=0.1, eps=1e-5) self._init_w(init_gain) def _init_w(self, init_gain): @@ -45,7 +45,7 @@ class LinearBN(nn.Module): out = self.linear_layer(x) if len(out.shape) == 3: out = out.permute(1, 2, 0) - out = self.bn(out) + out = self.batch_normalization(out) if len(out.shape) == 3: out = out.permute(2, 0, 1) return out @@ -63,18 +63,18 @@ class Prenet(nn.Module): self.prenet_dropout = prenet_dropout in_features = [in_features] + out_features[:-1] if prenet_type == "bn": - self.layers = nn.ModuleList([ + self.linear_layers = nn.ModuleList([ LinearBN(in_size, out_size, bias=bias) for (in_size, out_size) in zip(in_features, out_features) ]) elif prenet_type == "original": - self.layers = nn.ModuleList([ + self.linear_layers = nn.ModuleList([ Linear(in_size, out_size, bias=bias) for (in_size, out_size) in zip(in_features, out_features) ]) def forward(self, x): - for linear in self.layers: + for linear in self.linear_layers: if self.prenet_dropout: x = F.dropout(F.relu(linear(x)), p=0.5, training=self.training) else: @@ -93,7 +93,7 @@ class LocationLayer(nn.Module): attention_n_filters=32, attention_kernel_size=31): super(LocationLayer, self).__init__() - self.location_conv = nn.Conv1d( + self.location_conv1d = nn.Conv1d( in_channels=2, out_channels=attention_n_filters, kernel_size=attention_kernel_size, @@ -104,7 +104,7 @@ class LocationLayer(nn.Module): attention_n_filters, attention_dim, bias=False, init_gain='tanh') def forward(self, attention_cat): - processed_attention = self.location_conv(attention_cat) + processed_attention = self.location_conv1d(attention_cat) processed_attention = self.location_dense( processed_attention.transpose(1, 2)) return processed_attention @@ -138,7 +138,7 @@ class GravesAttention(nn.Module): def init_states(self, inputs): if self.J is None or inputs.shape[1]+1 > self.J.shape[-1]: - self.J = torch.arange(0, inputs.shape[1]+2).to(inputs.device) + 0.5 + self.J = torch.arange(0, inputs.shape[1]+2.0).to(inputs.device) + 0.5 self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device) self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device) diff --git a/layers/tacotron2.py b/layers/tacotron2.py index fa76a6b2..f11aee65 100644 --- a/layers/tacotron2.py +++ b/layers/tacotron2.py @@ -6,130 +6,128 @@ from .common_layers import init_attn, Prenet, Linear class ConvBNBlock(nn.Module): - def __init__(self, in_channels, out_channels, kernel_size, nonlinear=None): + def __init__(self, in_channels, out_channels, kernel_size, activation=None): super(ConvBNBlock, self).__init__() assert (kernel_size - 1) % 2 == 0 padding = (kernel_size - 1) // 2 - conv1d = nn.Conv1d(in_channels, - out_channels, - kernel_size, - padding=padding) - norm = nn.BatchNorm1d(out_channels) - dropout = nn.Dropout(p=0.5) - if nonlinear == 'relu': - self.net = nn.Sequential(conv1d, norm, nn.ReLU(), dropout) - elif nonlinear == 'tanh': - self.net = nn.Sequential(conv1d, norm, nn.Tanh(), dropout) + self.convolution1d = nn.Conv1d(in_channels, + out_channels, + kernel_size, + padding=padding) + self.batch_normalization = nn.BatchNorm1d(out_channels, momentum=0.1, eps=1e-5) + self.dropout = nn.Dropout(p=0.5) + if activation == 'relu': + self.activation = nn.ReLU() + elif activation == 'tanh': + self.activation = nn.Tanh() else: - self.net = nn.Sequential(conv1d, norm, dropout) + self.activation = nn.Identity() def forward(self, x): - output = self.net(x) - return output + o = self.convolution1d(x) + o = self.batch_normalization(o) + o = self.activation(o) + o = self.dropout(o) + return o class Postnet(nn.Module): - def __init__(self, mel_dim, num_convs=5): + def __init__(self, output_dim, num_convs=5): super(Postnet, self).__init__() self.convolutions = nn.ModuleList() self.convolutions.append( - ConvBNBlock(mel_dim, 512, kernel_size=5, nonlinear='tanh')) + ConvBNBlock(output_dim, 512, kernel_size=5, activation='tanh')) for _ in range(1, num_convs - 1): self.convolutions.append( - ConvBNBlock(512, 512, kernel_size=5, nonlinear='tanh')) + ConvBNBlock(512, 512, kernel_size=5, activation='tanh')) self.convolutions.append( - ConvBNBlock(512, mel_dim, kernel_size=5, nonlinear=None)) + ConvBNBlock(512, output_dim, kernel_size=5, activation=None)) def forward(self, x): + o = x for layer in self.convolutions: - x = layer(x) - return x + o = layer(o) + return o class Encoder(nn.Module): - def __init__(self, in_features=512): + def __init__(self, output_input_dim=512): super(Encoder, self).__init__() - convolutions = [] + self.convolutions = nn.ModuleList() for _ in range(3): - convolutions.append( - ConvBNBlock(in_features, in_features, 5, 'relu')) - self.convolutions = nn.Sequential(*convolutions) - self.lstm = nn.LSTM(in_features, - int(in_features / 2), + self.convolutions.append( + ConvBNBlock(output_input_dim, output_input_dim, 5, 'relu')) + self.lstm = nn.LSTM(output_input_dim, + int(output_input_dim / 2), num_layers=1, batch_first=True, + bias=True, bidirectional=True) self.rnn_state = None def forward(self, x, input_lengths): - x = self.convolutions(x) - x = x.transpose(1, 2) - x = nn.utils.rnn.pack_padded_sequence(x, + o = x + for layer in self.convolutions: + o = layer(o) + o = o.transpose(1, 2) + o = nn.utils.rnn.pack_padded_sequence(o, input_lengths, batch_first=True) self.lstm.flatten_parameters() - outputs, _ = self.lstm(x) - outputs, _ = nn.utils.rnn.pad_packed_sequence( - outputs, - batch_first=True, - ) - return outputs + o, _ = self.lstm(o) + o, _ = nn.utils.rnn.pad_packed_sequence(o, batch_first=True) + return o def inference(self, x): - x = self.convolutions(x) - x = x.transpose(1, 2) - self.lstm.flatten_parameters() - outputs, _ = self.lstm(x) - return outputs - - def inference_truncated(self, x): - """ - Preserve encoder state for continuous inference - """ - x = self.convolutions(x) - x = x.transpose(1, 2) - self.lstm.flatten_parameters() - outputs, self.rnn_state = self.lstm(x, self.rnn_state) - return outputs + o = x + for layer in self.convolutions: + o = layer(o) + o = o.transpose(1, 2) + # self.lstm.flatten_parameters() + o, _ = self.lstm(o) + return o # adapted from https://github.com/NVIDIA/tacotron2/ class Decoder(nn.Module): # Pylint gets confused by PyTorch conventions here #pylint: disable=attribute-defined-outside-init - def __init__(self, in_features, memory_dim, r, attn_type, attn_win, attn_norm, + def __init__(self, input_dim, frame_dim, r, attn_type, attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn, trans_agent, forward_attn_mask, location_attn, attn_K, separate_stopnet, speaker_embedding_dim): super(Decoder, self).__init__() - self.memory_dim = memory_dim + self.frame_dim = frame_dim self.r_init = r self.r = r - self.encoder_embedding_dim = in_features + self.encoder_embedding_dim = input_dim self.separate_stopnet = separate_stopnet + self.max_decoder_steps = 1000 + self.gate_threshold = 0.5 + + # model dimensions self.query_dim = 1024 self.decoder_rnn_dim = 1024 self.prenet_dim = 256 - self.max_decoder_steps = 1000 - self.gate_threshold = 0.5 + self.attn_dim = 128 self.p_attention_dropout = 0.1 self.p_decoder_dropout = 0.1 # memory -> |Prenet| -> processed_memory - prenet_dim = self.memory_dim - self.prenet = Prenet( - prenet_dim, - prenet_type, - prenet_dropout, - out_features=[self.prenet_dim, self.prenet_dim], - bias=False) + prenet_dim = self.frame_dim + self.prenet = Prenet(prenet_dim, + prenet_type, + prenet_dropout, + out_features=[self.prenet_dim, self.prenet_dim], + bias=False) - self.attention_rnn = nn.LSTMCell(self.prenet_dim + in_features, - self.query_dim) + self.attention_rnn = nn.LSTMCell(self.prenet_dim + input_dim, + self.query_dim, + bias=True) self.attention = init_attn(attn_type=attn_type, query_dim=self.query_dim, - embedding_dim=in_features, + embedding_dim=input_dim, attention_dim=128, location_attention=location_attn, attention_location_n_filters=32, @@ -141,15 +139,16 @@ class Decoder(nn.Module): forward_attn_mask=forward_attn_mask, attn_K=attn_K) - self.decoder_rnn = nn.LSTMCell(self.query_dim + in_features, - self.decoder_rnn_dim, 1) + self.decoder_rnn = nn.LSTMCell(self.query_dim + input_dim, + self.decoder_rnn_dim, + bias=True) - self.linear_projection = Linear(self.decoder_rnn_dim + in_features, - self.memory_dim * self.r_init) + self.linear_projection = Linear(self.decoder_rnn_dim + input_dim, + self.frame_dim * self.r_init) self.stopnet = nn.Sequential( nn.Dropout(0.1), - Linear(self.decoder_rnn_dim + self.memory_dim * self.r_init, + Linear(self.decoder_rnn_dim + self.frame_dim * self.r_init, 1, bias=True, init_gain='sigmoid')) @@ -161,7 +160,7 @@ class Decoder(nn.Module): def get_go_frame(self, inputs): B = inputs.size(0) memory = torch.zeros(1, device=inputs.device).repeat(B, - self.memory_dim * self.r) + self.frame_dim * self.r) return memory def _init_states(self, inputs, mask, keep_states=False): @@ -187,9 +186,9 @@ class Decoder(nn.Module): Reshape the spectrograms for given 'r' """ # Grouping multiple frames if necessary - if memory.size(-1) == self.memory_dim: + if memory.size(-1) == self.frame_dim: memory = memory.view(memory.shape[0], memory.size(1) // self.r, -1) - # Time first (T_decoder, B, memory_dim) + # Time first (T_decoder, B, frame_dim) memory = memory.transpose(0, 1) return memory @@ -197,22 +196,22 @@ class Decoder(nn.Module): alignments = torch.stack(alignments).transpose(0, 1) stop_tokens = torch.stack(stop_tokens).transpose(0, 1) outputs = torch.stack(outputs).transpose(0, 1).contiguous() - outputs = outputs.view(outputs.size(0), -1, self.memory_dim) + outputs = outputs.view(outputs.size(0), -1, self.frame_dim) outputs = outputs.transpose(1, 2) return outputs, stop_tokens, alignments def _update_memory(self, memory): if len(memory.shape) == 2: - return memory[:, self.memory_dim * (self.r - 1):] - return memory[:, :, self.memory_dim * (self.r - 1):] + return memory[:, self.frame_dim * (self.r - 1):] + return memory[:, :, self.frame_dim * (self.r - 1):] def decode(self, memory): ''' shapes: - - memory: B x r * self.memory_dim + - memory: B x r * self.frame_dim ''' # self.context: B x D_en - # query_input: B x D_en + (r * self.memory_dim) + # query_input: B x D_en + (r * self.frame_dim) query_input = torch.cat((memory, self.context), -1) # self.query and self.attention_rnn_cell_state : B x D_attn_rnn self.query, self.attention_rnn_cell_state = self.attention_rnn( @@ -235,16 +234,16 @@ class Decoder(nn.Module): # B x (D_decoder_rnn + D_en) decoder_hidden_context = torch.cat((self.decoder_hidden, self.context), dim=1) - # B x (self.r * self.memory_dim) + # B x (self.r * self.frame_dim) decoder_output = self.linear_projection(decoder_hidden_context) - # B x (D_decoder_rnn + (self.r * self.memory_dim)) + # B x (D_decoder_rnn + (self.r * self.frame_dim)) stopnet_input = torch.cat((self.decoder_hidden, decoder_output), dim=1) if self.separate_stopnet: stop_token = self.stopnet(stopnet_input.detach()) else: stop_token = self.stopnet(stopnet_input) # select outputs for the reduction rate self.r - decoder_output = decoder_output[:, :self.r * self.memory_dim] + decoder_output = decoder_output[:, :self.r * self.frame_dim] return decoder_output, self.attention.attention_weights, stop_token def forward(self, inputs, memories, mask, speaker_embeddings=None): diff --git a/models/tacotron2.py b/models/tacotron2.py index d530774a..3e7adfca 100644 --- a/models/tacotron2.py +++ b/models/tacotron2.py @@ -29,7 +29,7 @@ class Tacotron2(nn.Module): super(Tacotron2, self).__init__() self.postnet_output_dim = postnet_output_dim self.decoder_output_dim = decoder_output_dim - self.n_frames_per_step = r + self.r = r self.bidirectional_decoder = bidirectional_decoder decoder_dim = 512 if num_speakers > 1 else 512 encoder_dim = 512 if num_speakers > 1 else 512 diff --git a/notebooks/Benchmark.ipynb b/notebooks/Benchmark.ipynb deleted file mode 100644 index 7d3a45cf..00000000 --- a/notebooks/Benchmark.ipynb +++ /dev/null @@ -1,546 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is to test TTS models with benchmark sentences for speech synthesis.\n", - "\n", - "Before running this script please DON'T FORGET: \n", - "- to set file paths.\n", - "- to download related model files from TTS and WaveRNN.\n", - "- to checkout right commit versions (given next to the model) of TTS and WaveRNN.\n", - "- to set the right paths in the cell below.\n", - "\n", - "Repositories:\n", - "- TTS: https://github.com/mozilla/TTS\n", - "- WaveRNN: https://github.com/erogol/WaveRNN" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "TTS_PATH = \"/home/erogol/projects/\"\n", - "WAVERNN_PATH =\"/home/erogol/projects/\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "scrolled": true - }, - "outputs": [], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2\n", - "import os\n", - "import sys\n", - "import io\n", - "import torch \n", - "import time\n", - "import json\n", - "import numpy as np\n", - "from collections import OrderedDict\n", - "from matplotlib import pylab as plt\n", - "\n", - "%pylab inline\n", - "rcParams[\"figure.figsize\"] = (16,5)\n", - "\n", - "# add libraries into environment\n", - "sys.path.append(TTS_PATH) # set this if TTS is not installed globally\n", - "sys.path.append(WAVERNN_PATH) # set this if TTS is not installed globally\n", - "\n", - "import librosa\n", - "import librosa.display\n", - "\n", - "from TTS.models.tacotron import Tacotron \n", - "from TTS.layers import *\n", - "from TTS.utils.data import *\n", - "from TTS.utils.audio import AudioProcessor\n", - "from TTS.utils.generic_utils import load_config, setup_model\n", - "from TTS.utils.text import text_to_sequence\n", - "from TTS.utils.synthesis import synthesis\n", - "from TTS.utils.visual import visualize\n", - "from TTS.utils.text.symbols import make_symbols, symbols, phonemes\n", - "\n", - "import IPython\n", - "from IPython.display import Audio\n", - "\n", - "import os\n", - "os.environ['CUDA_VISIBLE_DEVICES']='1'" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "def tts(model, text, CONFIG, use_cuda, ap, use_gl, figures=True):\n", - " t_1 = time.time()\n", - " waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, style_wav=None, \n", - " truncated=False, enable_eos_bos_chars=CONFIG.enable_eos_bos_chars,\n", - " use_griffin_lim=use_gl)\n", - " if CONFIG.model == \"Tacotron\" and not use_gl:\n", - " # coorect the normalization differences b/w TTS and the Vocoder.\n", - " mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T\n", - " if not use_gl:\n", - " mel_postnet_spec = ap._denormalize(mel_postnet_spec)\n", - " mel_postnet_spec = ap_vocoder._normalize(mel_postnet_spec)\n", - " waveform = wavernn.generate(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0).cuda(), batched=batched_wavernn, target=8000, overlap=400)\n", - "\n", - " print(\" > Run-time: {}\".format(time.time() - t_1))\n", - " if figures: \n", - " visualize(alignment, mel_postnet_spec, stop_tokens, text, ap.hop_length, CONFIG, mel_spec) \n", - " IPython.display.display(Audio(waveform, rate=CONFIG.audio['sample_rate'])) \n", - " os.makedirs(OUT_FOLDER, exist_ok=True)\n", - " file_name = text.replace(\" \", \"_\").replace(\".\",\"\") + \".wav\"\n", - " out_path = os.path.join(OUT_FOLDER, file_name)\n", - " ap.save_wav(waveform, out_path)\n", - " return alignment, mel_postnet_spec, stop_tokens, waveform" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Set constants\n", - "ROOT_PATH = '/home/erogol/Models/LJSpeech/ljspeech-bn-December-23-2019_08+34AM-ffea133/'\n", - "MODEL_PATH = ROOT_PATH + '/best_model.pth.tar'\n", - "CONFIG_PATH = ROOT_PATH + '/config.json'\n", - "OUT_FOLDER = '/home/erogol/Dropbox/AudioSamples/benchmark_samples/'\n", - "CONFIG = load_config(CONFIG_PATH)\n", - "VOCODER_MODEL_PATH = \"/media/erogol/data_ssd/Models/wavernn/ljspeech/mold_ljspeech_best_model/checkpoint_433000.pth.tar\"\n", - "VOCODER_CONFIG_PATH = \"/media/erogol/data_ssd/Models/wavernn/ljspeech/mold_ljspeech_best_model/config.json\"\n", - "VOCODER_CONFIG = load_config(VOCODER_CONFIG_PATH)\n", - "use_cuda = True\n", - "\n", - "# Set some config fields manually for testing\n", - "# CONFIG.windowing = False\n", - "# CONFIG.prenet_dropout = False\n", - "# CONFIG.separate_stopnet = True\n", - "CONFIG.use_forward_attn = True\n", - "# CONFIG.forward_attn_mask = True\n", - "# CONFIG.stopnet = True\n", - "\n", - "# Set the vocoder\n", - "use_gl = True # use GL if True\n", - "batched_wavernn = True # use batched wavernn inference if True" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# LOAD TTS MODEL\n", - "# multi speaker \n", - "if CONFIG.use_speaker_embedding:\n", - " speakers = json.load(open(f\"{ROOT_PATH}/speakers.json\", 'r'))\n", - " speakers_idx_to_id = {v: k for k, v in speakers.items()}\n", - "else:\n", - " speakers = []\n", - " speaker_id = None\n", - "\n", - "# if the vocabulary was passed, replace the default\n", - "if 'characters' in CONFIG.keys():\n", - " symbols, phonemes = make_symbols(**CONFIG.characters)\n", - "\n", - "# load the model\n", - "num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols)\n", - "model = setup_model(num_chars, len(speakers), CONFIG)\n", - "\n", - "# load the audio processor\n", - "ap = AudioProcessor(**CONFIG.audio) \n", - "\n", - "\n", - "# load model state\n", - "if use_cuda:\n", - " cp = torch.load(MODEL_PATH)\n", - "else:\n", - " cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n", - "\n", - "# load the model\n", - "model.load_state_dict(cp['model'])\n", - "if use_cuda:\n", - " model.cuda()\n", - "model.eval()\n", - "print(cp['step'])\n", - "print(cp['r'])\n", - "\n", - "# set model stepsize\n", - "if 'r' in cp:\n", - " model.decoder.set_r(cp['r'])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# LOAD WAVERNN - Make sure you downloaded the model and installed the module\n", - "if use_gl == False:\n", - " from WaveRNN.models.wavernn import Model\n", - " from WaveRNN.utils.audio import AudioProcessor as AudioProcessorVocoder\n", - " bits = 10\n", - " ap_vocoder = AudioProcessorVocoder(**VOCODER_CONFIG.audio) \n", - " wavernn = Model(\n", - " rnn_dims=512,\n", - " fc_dims=512,\n", - " mode=VOCODER_CONFIG.mode,\n", - " mulaw=VOCODER_CONFIG.mulaw,\n", - " pad=VOCODER_CONFIG.pad,\n", - " upsample_factors=VOCODER_CONFIG.upsample_factors,\n", - " feat_dims=VOCODER_CONFIG.audio[\"num_mels\"],\n", - " compute_dims=128,\n", - " res_out_dims=128,\n", - " res_blocks=10,\n", - " hop_length=ap_vocoder.hop_length,\n", - " sample_rate=ap_vocoder.sample_rate,\n", - " use_upsample_net = True,\n", - " use_aux_net = True\n", - " ).cuda()\n", - "\n", - " check = torch.load(VOCODER_MODEL_PATH)\n", - " wavernn.load_state_dict(check['model'], strict=False)\n", - " if use_cuda:\n", - " wavernn.cuda()\n", - " wavernn.eval();\n", - " print(check['step'])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Comparision with https://mycroft.ai/blog/available-voices/" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model.eval()\n", - "model.decoder.max_decoder_steps = 2000\n", - "speaker_id = None\n", - "sentence = \"Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model.eval()\n", - "model.decoder.max_decoder_steps = 2000\n", - "sentence = \"Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Be a voice, not an echo.\" # 'echo' is not in training set. \n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"The human voice is the most perfect instrument of all.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"I'm sorry Dave. I'm afraid I can't do that.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"This cake is great. It's so delicious and moist.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Comparison with https://keithito.github.io/audio-samples/" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Generative adversarial network or variational auto-encoder.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Scientists at the CERN laboratory say they have discovered a new particle.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Here’s a way to measure the acute emotional intelligence that has never gone out of style.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"President Trump met with other leaders at the Group of 20 conference.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"The buses aren't the problem, they actually provide a solution.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Comparison with https://google.github.io/tacotron/publications/tacotron/index.html" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Generative adversarial network or variational auto-encoder.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Basilar membrane and otolaryngology are not auto-correlations.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \" He has read the whole thing.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"He reads books.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Thisss isrealy awhsome.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"This is your internet browser, Firefox.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"This is your internet browser Firefox.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"The quick brown fox jumps over the lazy dog.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Does the quick brown fox jump over the lazy dog?\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Eren, how are you?\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Hard Sentences" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Encouraged, he started with a minute a day.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"His meditation consisted of “body scanning” which involved focusing his mind and energy on each section of the body from head to toe .\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase the grey matter in the parts of the brain responsible for emotional regulation and learning . \"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"If he decided to watch TV he really watched it.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "sentence = \"Often we try to bring about change through sheer effort and we put all of our energy into a new initiative .\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# for twb dataset\n", - "sentence = \"In our preparation for Easter, God in his providence offers us each year the season of Lent as a sacramental sign of our conversion.\"\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.4" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/notebooks/TestAttention.ipynb b/notebooks/TestAttention.ipynb index b350b070..92b1d6c4 100644 --- a/notebooks/TestAttention.ipynb +++ b/notebooks/TestAttention.ipynb @@ -2,15 +2,22 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "source": [ - "This notebook is to test attention performance on hard sentences taken from DeepVoice paper." + "This notebook is to test attention performance of a TTS model on a list of sentences taken from DeepVoice paper.\n", + "### Features of this notebook\n", + "- You can see visually how your model performs on each sentence and try to dicern common problems.\n", + "- At the end, final attention score would be printed showing the ultimate performace of your model. You can use this value to perform model selection.\n", + "- You can change the list of sentences byt providing a different sentence file." ] }, { "cell_type": "code", "execution_count": null, "metadata": { + "Collapsed": "false", "scrolled": true }, "outputs": [], @@ -31,7 +38,8 @@ "\n", "from TTS.layers import *\n", "from TTS.utils.audio import AudioProcessor\n", - "from TTS.utils.generic_utils import load_config, setup_model\n", + "from TTS.utils.generic_utils import setup_model\n", + "from TTS.utils.io import load_config\n", "from TTS.utils.text import text_to_sequence\n", "from TTS.utils.synthesis import synthesis\n", "from TTS.utils.visual import plot_alignment\n", @@ -45,7 +53,7 @@ "def tts(model, text, CONFIG, use_cuda, ap):\n", " t_1 = time.time()\n", " # run the model\n", - " waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, None, False, CONFIG.enable_eos_bos_chars, True)\n", + " waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens, inputs = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, None, False, CONFIG.enable_eos_bos_chars, True)\n", " if CONFIG.model == \"Tacotron\" and not use_gl:\n", " mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T\n", " # plotting\n", @@ -62,7 +70,7 @@ " return attn_score\n", "\n", "# Set constants\n", - "ROOT_PATH = '/home/erogol/Models/LJSpeech/ljspeech-March-17-2020_01+16AM-871588c/'\n", + "ROOT_PATH = '/home/erogol/Models/LJSpeech/ljspeech-May-20-2020_12+29PM-1835628/'\n", "MODEL_PATH = ROOT_PATH + '/best_model.pth.tar'\n", "CONFIG_PATH = ROOT_PATH + '/config.json'\n", "OUT_FOLDER = './hard_sentences/'\n", @@ -82,7 +90,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "# LOAD TTS MODEL\n", @@ -130,7 +140,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "model.decoder.max_decoder_steps=3000\n", @@ -144,7 +156,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "np.mean(attn_scores)" diff --git a/requirements.txt b/requirements.txt index 47fa1ec0..5f31db70 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,4 +1,4 @@ -numpy>=1.14.3 +numpy>=1.16.0 torch>=0.4.1 librosa>=0.5.1 Unidecode>=0.4.20 diff --git a/requirements_tests.txt b/requirements_tests.txt new file mode 100644 index 00000000..1e0615b2 --- /dev/null +++ b/requirements_tests.txt @@ -0,0 +1,15 @@ +numpy>=1.16.0 +torch>=0.4.1 +tensorflow>=2.2 +librosa>=0.5.1 +Unidecode>=0.4.20 +tensorboard +tensorboardX +matplotlib +Pillow +flask +scipy +tqdm +soundfile +phonemizer +bokeh==1.4.0 diff --git a/server/synthesizer.py b/server/synthesizer.py index e9205bf1..765aab8a 100644 --- a/server/synthesizer.py +++ b/server/synthesizer.py @@ -7,7 +7,8 @@ import torch import yaml from TTS.utils.audio import AudioProcessor -from TTS.utils.generic_utils import load_config, setup_model +from TTS.utils.io import load_config +from TTS.utils.generic_utils import setup_model from TTS.utils.speakers import load_speaker_mapping # pylint: disable=unused-wildcard-import # pylint: disable=wildcard-import @@ -164,19 +165,25 @@ class Synthesizer(object): sentences = list(filter(None, [s.strip() for s in sentences])) # remove empty sentences return sentences - def tts(self, text): + def tts(self, text, speaker_id=None): wavs = [] sens = self.split_into_sentences(text) print(sens) + speaker_id = id_to_torch(speaker_id) + if speaker_id is not None and self.use_cuda: + speaker_id = speaker_id.cuda() + for sen in sens: # preprocess the given text - inputs = text_to_seqvec(sen, self.tts_config, self.use_cuda) + inputs = text_to_seqvec(sen, self.tts_config) + inputs = numpy_to_torch(inputs, torch.long, cuda=self.use_cuda) + inputs = inputs.unsqueeze(0) # synthesize voice - decoder_output, postnet_output, alignments, _ = run_model( - self.tts_model, inputs, self.tts_config, False, None, None) + decoder_output, postnet_output, alignments, stop_tokens = run_model_torch( + self.tts_model, inputs, self.tts_config, False, speaker_id, None) # convert outputs to numpy - postnet_output, decoder_output, _ = parse_outputs( - postnet_output, decoder_output, alignments) + postnet_output, decoder_output, _, _ = parse_outputs_torch( + postnet_output, decoder_output, alignments, stop_tokens) if self.pwgan: vocoder_input = torch.FloatTensor(postnet_output.T).unsqueeze(0) diff --git a/speaker_encoder/tests.py b/speaker_encoder/tests.py index 220ba360..039833fc 100644 --- a/speaker_encoder/tests.py +++ b/speaker_encoder/tests.py @@ -4,7 +4,7 @@ import torch as T from TTS.speaker_encoder.model import SpeakerEncoder from TTS.speaker_encoder.loss import GE2ELoss -from TTS.utils.generic_utils import load_config +from TTS.utils.io import load_config file_path = os.path.dirname(os.path.realpath(__file__)) + "/../tests/" diff --git a/synthesize.py b/synthesize.py index 1f1ce36f..1a760268 100644 --- a/synthesize.py +++ b/synthesize.py @@ -25,7 +25,7 @@ def tts(model, figures=False): t_1 = time.time() use_vocoder_model = vocoder_model is not None - waveform, alignment, _, postnet_output, stop_tokens = synthesis( + waveform, alignment, _, postnet_output, stop_tokens, _ = synthesis( model, text, C, use_cuda, ap, speaker_id, style_wav=False, truncated=False, enable_eos_bos_chars=C.enable_eos_bos_chars, use_griffin_lim=(not use_vocoder_model), do_trim_silence=True) diff --git a/tests/test_audio.py b/tests/test_audio.py index 2ede77ce..4b8ee276 100644 --- a/tests/test_audio.py +++ b/tests/test_audio.py @@ -3,7 +3,7 @@ import unittest from TTS.tests import get_tests_path, get_tests_input_path, get_tests_output_path from TTS.utils.audio import AudioProcessor -from TTS.utils.generic_utils import load_config +from TTS.utils.io import load_config TESTS_PATH = get_tests_path() OUT_PATH = os.path.join(get_tests_output_path(), "audio_tests") @@ -172,4 +172,4 @@ class TestAudio(unittest.TestCase): mel_reference = self.ap.melspectrogram(wav) mel_norm = ap.melspectrogram(wav) mel_denorm = ap._denormalize(mel_norm) - assert abs(mel_reference - mel_denorm).max() < 1e-4 \ No newline at end of file + assert abs(mel_reference - mel_denorm).max() < 1e-4 diff --git a/tests/test_demo_server.py b/tests/test_demo_server.py index a0837686..51cbf341 100644 --- a/tests/test_demo_server.py +++ b/tests/test_demo_server.py @@ -6,7 +6,8 @@ import torch as T from TTS.server.synthesizer import Synthesizer from TTS.tests import get_tests_input_path, get_tests_output_path from TTS.utils.text.symbols import make_symbols, phonemes, symbols -from TTS.utils.generic_utils import load_config, save_checkpoint, setup_model +from TTS.utils.generic_utils import setup_model +from TTS.utils.io import load_config, save_checkpoint class DemoServerTest(unittest.TestCase): @@ -21,7 +22,7 @@ class DemoServerTest(unittest.TestCase): num_chars = len(phonemes) if config.use_phonemes else len(symbols) model = setup_model(num_chars, 0, config) output_path = os.path.join(get_tests_output_path()) - save_checkpoint(model, None, None, None, output_path, 10, 10) + save_checkpoint(model, None, 10, 10, 1, output_path) def test_in_out(self): self._create_random_model() diff --git a/tests/test_loader.py b/tests/test_loader.py index 447c7b38..9edd233f 100644 --- a/tests/test_loader.py +++ b/tests/test_loader.py @@ -5,7 +5,7 @@ import torch import numpy as np from torch.utils.data import DataLoader -from TTS.utils.generic_utils import load_config +from TTS.utils.io import load_config from TTS.utils.audio import AudioProcessor from TTS.datasets import TTSDataset from TTS.datasets.preprocess import ljspeech diff --git a/tests/test_tacotron2_model.py b/tests/test_tacotron2_model.py index aa2869eb..eb91b3cc 100644 --- a/tests/test_tacotron2_model.py +++ b/tests/test_tacotron2_model.py @@ -6,7 +6,7 @@ import numpy as np from torch import optim from torch import nn -from TTS.utils.generic_utils import load_config +from TTS.utils.io import load_config from TTS.layers.losses import MSELossMasked from TTS.models.tacotron2 import Tacotron2 diff --git a/tests/test_tacotron2_tf_model.py b/tests/test_tacotron2_tf_model.py new file mode 100644 index 00000000..aca363a8 --- /dev/null +++ b/tests/test_tacotron2_tf_model.py @@ -0,0 +1,63 @@ +import os +import torch +import unittest +import numpy as np +import tensorflow as tf + +from TTS.utils.io import load_config +from TTS.tf.models.tacotron2 import Tacotron2 + +#pylint: disable=unused-variable + +torch.manual_seed(1) +use_cuda = torch.cuda.is_available() +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + +file_path = os.path.dirname(os.path.realpath(__file__)) +c = load_config(os.path.join(file_path, 'test_config.json')) + + +class TacotronTFTrainTest(unittest.TestCase): + + @staticmethod + def generate_dummy_inputs(): + chars_seq = torch.randint(0, 24, (8, 128)).long().to(device) + chars_seq_lengths = torch.randint(100, 128, (8, )).long().to(device) + chars_seq_lengths = torch.sort(chars_seq_lengths, descending=True)[0] + mel_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) + mel_postnet_spec = torch.rand(8, 30, c.audio['num_mels']).to(device) + mel_lengths = torch.randint(20, 30, (8, )).long().to(device) + stop_targets = torch.zeros(8, 30, 1).float().to(device) + speaker_ids = torch.randint(0, 5, (8, )).long().to(device) + + chars_seq = tf.convert_to_tensor(chars_seq.cpu().numpy()) + chars_seq_lengths = tf.convert_to_tensor(chars_seq_lengths.cpu().numpy()) + mel_spec = tf.convert_to_tensor(mel_spec.cpu().numpy()) + return chars_seq, chars_seq_lengths, mel_spec, mel_postnet_spec, mel_lengths,\ + stop_targets, speaker_ids + + def test_train_step(self): + ''' test forward pass ''' + chars_seq, chars_seq_lengths, mel_spec, mel_postnet_spec, mel_lengths,\ + stop_targets, speaker_ids = self.generate_dummy_inputs() + + for idx in mel_lengths: + stop_targets[:, int(idx.item()):, 0] = 1.0 + + stop_targets = stop_targets.view(chars_seq.shape[0], + stop_targets.size(1) // c.r, -1) + stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze() + + model = Tacotron2(num_chars=24, r=c.r, num_speakers=5) + # training pass + output = model(chars_seq, chars_seq_lengths, mel_spec, training=True) + + # check model output shapes + assert np.all(output[0].shape == mel_spec.shape) + assert np.all(output[1].shape == mel_spec.shape) + assert output[2].shape[2] == chars_seq.shape[1] + assert output[2].shape[1] == (mel_spec.shape[1] // model.decoder.r) + assert output[3].shape[1] == (mel_spec.shape[1] // model.decoder.r) + + # inference pass + output = model(chars_seq, training=False) diff --git a/tests/test_tacotron_model.py b/tests/test_tacotron_model.py index ac6712b0..7053a580 100644 --- a/tests/test_tacotron_model.py +++ b/tests/test_tacotron_model.py @@ -5,7 +5,7 @@ import unittest from torch import optim from torch import nn -from TTS.utils.generic_utils import load_config +from TTS.utils.io import load_config from TTS.layers.losses import L1LossMasked from TTS.models.tacotron import Tacotron diff --git a/tests/test_text_processing.py b/tests/test_text_processing.py index 6c0c7058..93edabe7 100644 --- a/tests/test_text_processing.py +++ b/tests/test_text_processing.py @@ -5,7 +5,7 @@ import os import unittest from TTS.utils.text import * from TTS.tests import get_tests_path -from TTS.utils.generic_utils import load_config +from TTS.utils.io import load_config TESTS_PATH = get_tests_path() conf = load_config(os.path.join(TESTS_PATH, 'test_config.json')) @@ -92,4 +92,4 @@ def test_text2phone(): gt = "ɹ|iː|s|ə|n|t| |ɹ|ɪ|s|ɜː|tʃ| |æ|t| |h|ɑːɹ|v|ɚ|d| |h|ɐ|z| |ʃ|oʊ|n| |m|ɛ|d|ᵻ|t|eɪ|ɾ|ɪ|ŋ| |f|ɔː|ɹ| |æ|z| |l|ɪ|ɾ|əl| |æ|z| |eɪ|t| |w|iː|k|s| |k|æ|n| |æ|k|tʃ|uː|əl|i| |ɪ|n|k|ɹ|iː|s|,| |ð|ə| |ɡ|ɹ|eɪ| |m|æ|ɾ|ɚ|ɹ| |ɪ|n|ð|ə| |p|ɑːɹ|t|s| |ʌ|v|ð|ə| |b|ɹ|eɪ|n| |ɹ|ɪ|s|p|ɑː|n|s|ə|b|əl| |f|ɔː|ɹ| |ɪ|m|oʊ|ʃ|ə|n|əl| |ɹ|ɛ|ɡ|j|uː|l|eɪ|ʃ|ə|n| |æ|n|d| |l|ɜː|n|ɪ|ŋ|!" lang = "en-us" ph = text2phone(text, lang) - assert gt == ph, f"\n{phonemes} \n vs \n{gt}" \ No newline at end of file + assert gt == ph, f"\n{phonemes} \n vs \n{gt}" diff --git a/tf/README.md b/tf/README.md new file mode 100644 index 00000000..0f9d58e9 --- /dev/null +++ b/tf/README.md @@ -0,0 +1,20 @@ +## Utilities to Convert Models to Tensorflow2 +Here there are experimental utilities to convert trained Torch models to Tensorflow (2.2>=). + +Converting Torch models to TF enables all the TF toolkit to be used for better deployment and device specific optimizations. + +Note that we do not plan to share training scripts for Tensorflow in near future. But any contribution in that direction would be more than welcome. + +To see how you can use TF model at inference, check the notebook. + +This is an experimental release. If you encounter an error, please put an issue or in the best send a PR but you are mostly on your own. + + +### Converting a Model +- Run ```convert_tacotron2_torch_to_tf.py --torch_model_path /path/to/torch/model.pth.tar --config_path /path/to/model/config.json --output_path /path/to/output/tf/model``` with the right arguments. + +### Known issues ans limitations +- We use a custom model load/save mechanism which enables us to store model related information with models weights. (Similar to Torch). However, it is prone to random errors. +- Current TF model implementation is slightly slower than Torch model. Hopefully, it'll get better with improving TF support for eager mode and ```tf.function```. +- TF implementation of Tacotron2 only supports regular Tacotron2 as in the paper. +- You can only convert models trained after TF model implementation since model layers has been updated in Torch model. diff --git a/tf/convert_tacotron2_torch_to_tf.py b/tf/convert_tacotron2_torch_to_tf.py new file mode 100644 index 00000000..b1878343 --- /dev/null +++ b/tf/convert_tacotron2_torch_to_tf.py @@ -0,0 +1,211 @@ +# %% +import sys +sys.path.append('/home/erogol/Projects') +import os +os.environ['CUDA_VISIBLE_DEVICES'] = '' +# %% +import argparse +import numpy as np +import torch +import tensorflow as tf +from fuzzywuzzy import fuzz + +from TTS.utils.text.symbols import phonemes, symbols +from TTS.utils.generic_utils import setup_model +from TTS.utils.io import load_config +from TTS.tf.models.tacotron2 import Tacotron2 +from TTS.tf.utils.convert_torch_to_tf_utils import compare_torch_tf, tf_create_dummy_inputs, transfer_weights_torch_to_tf, convert_tf_name +from TTS.tf.utils.generic_utils import save_checkpoint + +parser = argparse.ArgumentParser() +parser.add_argument('--torch_model_path', + type=str, + help='Path to target torch model to be converted to TF.') +parser.add_argument('--config_path', + type=str, + help='Path to config file of torch model.') +parser.add_argument('--output_path', + type=str, + help='path to save TF model weights.') +args = parser.parse_args() + +# load model config +config_path = args.config_path +c = load_config(config_path) +num_speakers = 0 + +# init torch model +num_chars = len(phonemes) if c.use_phonemes else len(symbols) +model = setup_model(num_chars, num_speakers, c) +checkpoint = torch.load(args.torch_model_path, + map_location=torch.device('cpu')) +state_dict = checkpoint['model'] +model.load_state_dict(state_dict) + +# init tf model +model_tf = Tacotron2(num_chars=num_chars, + num_speakers=num_speakers, + r=model.decoder.r, + postnet_output_dim=c.audio['num_mels'], + decoder_output_dim=c.audio['num_mels'], + attn_type=c.attention_type, + attn_win=c.windowing, + attn_norm=c.attention_norm, + prenet_type=c.prenet_type, + prenet_dropout=c.prenet_dropout, + forward_attn=c.use_forward_attn, + trans_agent=c.transition_agent, + forward_attn_mask=c.forward_attn_mask, + location_attn=c.location_attn, + attn_K=c.attention_heads, + separate_stopnet=c.separate_stopnet, + bidirectional_decoder=c.bidirectional_decoder) + +# set initial layer mapping - these are not captured by the below heuristic approach +# TODO: set layer names so that we can remove these manual matching +common_sufix = '/.ATTRIBUTES/VARIABLE_VALUE' +var_map = [ + ('tacotron2/embedding/embeddings:0', 'embedding.weight'), + ('tacotron2/encoder/lstm/forward_lstm/lstm_cell_1/kernel:0', + 'encoder.lstm.weight_ih_l0'), + ('tacotron2/encoder/lstm/forward_lstm/lstm_cell_1/recurrent_kernel:0', + 'encoder.lstm.weight_hh_l0'), + ('tacotron2/encoder/lstm/backward_lstm/lstm_cell_2/kernel:0', + 'encoder.lstm.weight_ih_l0_reverse'), + ('tacotron2/encoder/lstm/backward_lstm/lstm_cell_2/recurrent_kernel:0', + 'encoder.lstm.weight_hh_l0_reverse'), + ('tacotron2/encoder/lstm/forward_lstm/lstm_cell_1/bias:0', + ('encoder.lstm.bias_ih_l0', 'encoder.lstm.bias_hh_l0')), + ('tacotron2/encoder/lstm/backward_lstm/lstm_cell_2/bias:0', + ('encoder.lstm.bias_ih_l0_reverse', 'encoder.lstm.bias_hh_l0_reverse')), + ('attention/v/kernel:0', 'decoder.attention.v.linear_layer.weight'), + ('decoder/linear_projection/kernel:0', + 'decoder.linear_projection.linear_layer.weight'), + ('decoder/stopnet/kernel:0', 'decoder.stopnet.1.linear_layer.weight') +] + +# %% +# get tf_model graph +input_ids, input_lengths, mel_outputs, mel_lengths = tf_create_dummy_inputs() +mel_pred = model_tf(input_ids, training=False) + +# get tf variables +tf_vars = model_tf.weights + +# match variable names with fuzzy logic +torch_var_names = list(state_dict.keys()) +tf_var_names = [we.name for we in model_tf.weights] +for tf_name in tf_var_names: + # skip re-mapped layer names + if tf_name in [name[0] for name in var_map]: + continue + tf_name_edited = convert_tf_name(tf_name) + ratios = [ + fuzz.ratio(torch_name, tf_name_edited) + for torch_name in torch_var_names + ] + max_idx = np.argmax(ratios) + matching_name = torch_var_names[max_idx] + del torch_var_names[max_idx] + var_map.append((tf_name, matching_name)) + +# %% +# print variable match +from pprint import pprint +pprint(var_map) +pprint(torch_var_names) + +# pass weights +tf_vars = transfer_weights_torch_to_tf(tf_vars, dict(var_map), state_dict) + +# Compare TF and TORCH models +# %% +# check embedding outputs +model.eval() +input_ids = torch.randint(0, 24, (1, 128)).long() + +o_t = model.embedding(input_ids) +o_tf = model_tf.embedding(input_ids.detach().numpy()) +assert abs(o_t.detach().numpy() - + o_tf.numpy()).sum() < 1e-5, abs(o_t.detach().numpy() - + o_tf.numpy()).sum() + +# compare encoder outputs +oo_en = model.encoder.inference(o_t.transpose(1, 2)) +ooo_en = model_tf.encoder(o_t.detach().numpy(), training=False) +assert compare_torch_tf(oo_en, ooo_en) < 1e-5 + +#pylint: disable=redefined-builtin +# compare decoder.attention_rnn +inp = torch.rand([1, 768]) +inp_tf = inp.numpy() +model.decoder._init_states(oo_en, mask=None) #pylint: disable=protected-access +output, cell_state = model.decoder.attention_rnn(inp) +states = model_tf.decoder.build_decoder_initial_states(1, 512, 128) +output_tf, memory_state = model_tf.decoder.attention_rnn(inp_tf, + states[2], + training=False) +assert compare_torch_tf(output, output_tf).mean() < 1e-5 + +query = output +inputs = torch.rand([1, 128, 512]) +query_tf = query.detach().numpy() +inputs_tf = inputs.numpy() + +# compare decoder.attention +model.decoder.attention.init_states(inputs) +processes_inputs = model.decoder.attention.preprocess_inputs(inputs) +loc_attn, proc_query = model.decoder.attention.get_location_attention( + query, processes_inputs) +context = model.decoder.attention(query, inputs, processes_inputs, None) + +attention_states = model_tf.decoder.build_decoder_initial_states(1, 512, 128)[-1] +model_tf.decoder.attention.process_values(tf.convert_to_tensor(inputs_tf)) +loc_attn_tf, proc_query_tf = model_tf.decoder.attention.get_loc_attn(query_tf, attention_states) +context_tf, attention, attention_states = model_tf.decoder.attention(query_tf, attention_states, training=False) + +assert compare_torch_tf(loc_attn, loc_attn_tf).mean() < 1e-5 +assert compare_torch_tf(proc_query, proc_query_tf).mean() < 1e-5 +assert compare_torch_tf(context, context_tf) < 1e-5 + +# compare decoder.decoder_rnn +input = torch.rand([1, 1536]) +input_tf = input.numpy() +model.decoder._init_states(oo_en, mask=None) #pylint: disable=protected-access +output, cell_state = model.decoder.decoder_rnn( + input, [model.decoder.decoder_hidden, model.decoder.decoder_cell]) +states = model_tf.decoder.build_decoder_initial_states(1, 512, 128) +output_tf, memory_state = model_tf.decoder.decoder_rnn(input_tf, + states[3], + training=False) +assert abs(input - input_tf).mean() < 1e-5 +assert compare_torch_tf(output, output_tf).mean() < 1e-5 + +# compare decoder.linear_projection +input = torch.rand([1, 1536]) +input_tf = input.numpy() +output = model.decoder.linear_projection(input) +output_tf = model_tf.decoder.linear_projection(input_tf, training=False) +assert compare_torch_tf(output, output_tf) < 1e-5 + +# compare decoder outputs +model.decoder.max_decoder_steps = 100 +model_tf.decoder.set_max_decoder_steps(100) +output, align, stop = model.decoder.inference(oo_en) +states = model_tf.decoder.build_decoder_initial_states(1, 512, 128) +output_tf, align_tf, stop_tf = model_tf.decoder(ooo_en, states, training=False) +assert compare_torch_tf(output.transpose(1, 2), output_tf) < 1e-4 + +# compare the whole model output +outputs_torch = model.inference(input_ids) +outputs_tf = model_tf(tf.convert_to_tensor(input_ids.numpy())) +print(abs(outputs_torch[0].numpy()[:, 0] - outputs_tf[0].numpy()[:, 0]).mean()) +assert compare_torch_tf(outputs_torch[2][:, 50, :], + outputs_tf[2][:, 50, :]) < 1e-5 +assert compare_torch_tf(outputs_torch[0], outputs_tf[0]) < 1e-4 + +# %% +# save tf model +save_checkpoint(model_tf, None, checkpoint['step'], checkpoint['epoch'], + checkpoint['r'], args.output_path) +print(' > Model conversion is successfully completed :).') diff --git a/tf/layers/common_layers.py b/tf/layers/common_layers.py new file mode 100644 index 00000000..995b5490 --- /dev/null +++ b/tf/layers/common_layers.py @@ -0,0 +1,256 @@ +import tensorflow as tf +from tensorflow import keras +from tensorflow.python.ops import math_ops +# from tensorflow_addons.seq2seq import BahdanauAttention + + +class Linear(keras.layers.Layer): + def __init__(self, units, use_bias, **kwargs): + super(Linear, self).__init__(**kwargs) + self.linear_layer = keras.layers.Dense(units, use_bias=use_bias, name='linear_layer') + self.activation = keras.layers.ReLU() + + def call(self, x): + """ + shapes: + x: B x T x C + """ + return self.activation(self.linear_layer(x)) + + +class LinearBN(keras.layers.Layer): + def __init__(self, units, use_bias, **kwargs): + super(LinearBN, self).__init__(**kwargs) + self.linear_layer = keras.layers.Dense(units, use_bias=use_bias, name='linear_layer') + self.batch_normalization = keras.layers.BatchNormalization(axis=-1, momentum=0.90, epsilon=1e-5, name='batch_normalization') + self.activation = keras.layers.ReLU() + + def call(self, x, training=None): + """ + shapes: + x: B x T x C + """ + out = self.linear_layer(x) + out = self.batch_normalization(out, training=training) + return self.activation(out) + + +class Prenet(keras.layers.Layer): + def __init__(self, + prenet_type, + prenet_dropout, + units, + bias, + **kwargs): + super(Prenet, self).__init__(**kwargs) + self.prenet_type = prenet_type + self.prenet_dropout = prenet_dropout + self.linear_layers = [] + if prenet_type == "bn": + self.linear_layers += [LinearBN(unit, use_bias=bias, name=f'linear_layer_{idx}') for idx, unit in enumerate(units)] + elif prenet_type == "original": + self.linear_layers += [Linear(unit, use_bias=bias, name=f'linear_layer_{idx}') for idx, unit in enumerate(units)] + else: + raise RuntimeError(' [!] Unknown prenet type.') + if prenet_dropout: + self.dropout = keras.layers.Dropout(rate=0.5) + + def call(self, x, training=None): + """ + shapes: + x: B x T x C + """ + for linear in self.linear_layers: + if self.prenet_dropout: + x = self.dropout(linear(x), training=training) + else: + x = linear(x) + return x + + +def _sigmoid_norm(score): + attn_weights = tf.nn.sigmoid(score) + attn_weights = attn_weights / tf.reduce_sum(attn_weights, axis=1, keepdims=True) + return attn_weights + + +class Attention(keras.layers.Layer): + """TODO: implement forward_attention + TODO: location sensitive attention + TODO: implement attention windowing """ + def __init__(self, attn_dim, use_loc_attn, loc_attn_n_filters, + loc_attn_kernel_size, use_windowing, norm, use_forward_attn, + use_trans_agent, use_forward_attn_mask, **kwargs): + super(Attention, self).__init__(**kwargs) + self.use_loc_attn = use_loc_attn + self.loc_attn_n_filters = loc_attn_n_filters + self.loc_attn_kernel_size = loc_attn_kernel_size + self.use_windowing = use_windowing + self.norm = norm + self.use_forward_attn = use_forward_attn + self.use_trans_agent = use_trans_agent + self.use_forward_attn_mask = use_forward_attn_mask + self.query_layer = tf.keras.layers.Dense(attn_dim, use_bias=False, name='query_layer/linear_layer') + self.inputs_layer = tf.keras.layers.Dense(attn_dim, use_bias=False, name=f'{self.name}/inputs_layer/linear_layer') + self.v = tf.keras.layers.Dense(1, use_bias=True, name='v/linear_layer') + if use_loc_attn: + self.location_conv1d = keras.layers.Conv1D( + filters=loc_attn_n_filters, + kernel_size=loc_attn_kernel_size, + padding='same', + use_bias=False, + name='location_layer/location_conv1d') + self.location_dense = keras.layers.Dense(attn_dim, use_bias=False, name='location_layer/location_dense') + if norm == 'softmax': + self.norm_func = tf.nn.softmax + elif norm == 'sigmoid': + self.norm_func = _sigmoid_norm + else: + raise ValueError("Unknown value for attention norm type") + + def init_states(self, batch_size, value_length): + states = () + if self.use_loc_attn: + attention_cum = tf.zeros([batch_size, value_length]) + attention_old = tf.zeros([batch_size, value_length]) + states = (attention_cum, attention_old) + return states + + def process_values(self, values): + """ cache values for decoder iterations """ + #pylint: disable=attribute-defined-outside-init + self.processed_values = self.inputs_layer(values) + self.values = values + + def get_loc_attn(self, query, states): + """ compute location attention, query layer and + unnorm. attention weights""" + attention_cum, attention_old = states + attn_cat = tf.stack([attention_old, attention_cum], axis=2) + + processed_query = self.query_layer(tf.expand_dims(query, 1)) + processed_attn = self.location_dense(self.location_conv1d(attn_cat)) + score = self.v( + tf.nn.tanh(self.processed_values + processed_query + + processed_attn)) + score = tf.squeeze(score, axis=2) + return score, processed_query + + def get_attn(self, query): + """ compute query layer and unnormalized attention weights """ + processed_query = self.query_layer(tf.expand_dims(query, 1)) + score = self.v(tf.nn.tanh(self.processed_values + processed_query)) + score = tf.squeeze(score, axis=2) + return score, processed_query + + def apply_score_masking(self, score, mask): #pylint: disable=no-self-use + """ ignore sequence paddings """ + padding_mask = tf.expand_dims(math_ops.logical_not(mask), 2) + # Bias so padding positions do not contribute to attention distribution. + score -= 1.e9 * math_ops.cast(padding_mask, dtype=tf.float32) + return score + + def call(self, query, states): + """ + shapes: + query: B x D + """ + if self.use_loc_attn: + score, _ = self.get_loc_attn(query, states) + else: + score, _ = self.get_attn(query) + + # TODO: masking + # if mask is not None: + # self.apply_score_masking(score, mask) + # attn_weights shape == (batch_size, max_length, 1) + + attn_weights = self.norm_func(score) + + # update attention states + if self.use_loc_attn: + states = (states[0] + attn_weights, attn_weights) + else: + states = () + + # context_vector shape after sum == (batch_size, hidden_size) + context_vector = tf.matmul(tf.expand_dims(attn_weights, axis=2), self.values, transpose_a=True, transpose_b=False) + context_vector = tf.squeeze(context_vector, axis=1) + return context_vector, attn_weights, states + + +# def _location_sensitive_score(processed_query, keys, processed_loc, attention_v, attention_b): +# dtype = processed_query.dtype +# num_units = keys.shape[-1].value or array_ops.shape(keys)[-1] +# return tf.reduce_sum(attention_v * tf.tanh(keys + processed_query + processed_loc + attention_b), [2]) + + +# class LocationSensitiveAttention(BahdanauAttention): +# def __init__(self, +# units, +# memory=None, +# memory_sequence_length=None, +# normalize=False, +# probability_fn="softmax", +# kernel_initializer="glorot_uniform", +# dtype=None, +# name="LocationSensitiveAttention", +# location_attention_filters=32, +# location_attention_kernel_size=31): + +# super(LocationSensitiveAttention, +# self).__init__(units=units, +# memory=memory, +# memory_sequence_length=memory_sequence_length, +# normalize=normalize, +# probability_fn='softmax', ## parent module default +# kernel_initializer=kernel_initializer, +# dtype=dtype, +# name=name) +# if probability_fn == 'sigmoid': +# self.probability_fn = lambda score, _: self._sigmoid_normalization(score) +# self.location_conv = keras.layers.Conv1D(filters=location_attention_filters, kernel_size=location_attention_kernel_size, padding='same', use_bias=False) +# self.location_dense = keras.layers.Dense(units, use_bias=False) +# # self.v = keras.layers.Dense(1, use_bias=True) + +# def _location_sensitive_score(self, processed_query, keys, processed_loc): +# processed_query = tf.expand_dims(processed_query, 1) +# return tf.reduce_sum(self.attention_v * tf.tanh(keys + processed_query + processed_loc), [2]) + +# def _location_sensitive(self, alignment_cum, alignment_old): +# alignment_cat = tf.stack([alignment_cum, alignment_old], axis=2) +# return self.location_dense(self.location_conv(alignment_cat)) + +# def _sigmoid_normalization(self, score): +# return tf.nn.sigmoid(score) / tf.reduce_sum(tf.nn.sigmoid(score), axis=-1, keepdims=True) + +# # def _apply_masking(self, score, mask): +# # padding_mask = tf.expand_dims(math_ops.logical_not(mask), 2) +# # # Bias so padding positions do not contribute to attention distribution. +# # score -= 1.e9 * math_ops.cast(padding_mask, dtype=tf.float32) +# # return score + +# def _calculate_attention(self, query, state): +# alignment_cum, alignment_old = state[:2] +# processed_query = self.query_layer( +# query) if self.query_layer else query +# processed_loc = self._location_sensitive(alignment_cum, alignment_old) +# score = self._location_sensitive_score( +# processed_query, +# self.keys, +# processed_loc) +# alignment = self.probability_fn(score, state) +# alignment_cum = alignment_cum + alignment +# state[0] = alignment_cum +# state[1] = alignment +# return alignment, state + +# def compute_context(self, alignments): +# expanded_alignments = tf.expand_dims(alignments, 1) +# context = tf.matmul(expanded_alignments, self.values) +# context = tf.squeeze(context, [1]) +# return context + +# # def call(self, query, state): +# # alignment, next_state = self._calculate_attention(query, state) +# # return alignment, next_state diff --git a/tf/layers/tacotron2.py b/tf/layers/tacotron2.py new file mode 100644 index 00000000..c6f1a2cd --- /dev/null +++ b/tf/layers/tacotron2.py @@ -0,0 +1,232 @@ + +import tensorflow as tf +from tensorflow import keras +from TTS.tf.utils.tf_utils import shape_list +from TTS.tf.layers.common_layers import Prenet, Attention +# from tensorflow_addons.seq2seq import AttentionWrapper + + +class ConvBNBlock(keras.layers.Layer): + def __init__(self, filters, kernel_size, activation, **kwargs): + super(ConvBNBlock, self).__init__(**kwargs) + self.convolution1d = keras.layers.Conv1D(filters, kernel_size, padding='same', name='convolution1d') + self.batch_normalization = keras.layers.BatchNormalization(axis=2, momentum=0.90, epsilon=1e-5, name='batch_normalization') + self.dropout = keras.layers.Dropout(rate=0.5, name='dropout') + self.activation = keras.layers.Activation(activation, name='activation') + + def call(self, x, training=None): + o = self.convolution1d(x) + o = self.batch_normalization(o, training=training) + o = self.activation(o) + o = self.dropout(o, training=training) + return o + + +class Postnet(keras.layers.Layer): + def __init__(self, output_filters, num_convs, **kwargs): + super(Postnet, self).__init__(**kwargs) + self.convolutions = [] + self.convolutions.append(ConvBNBlock(512, 5, 'tanh', name='convolutions_0')) + for idx in range(1, num_convs - 1): + self.convolutions.append(ConvBNBlock(512, 5, 'tanh', name=f'convolutions_{idx}')) + self.convolutions.append(ConvBNBlock(output_filters, 5, 'linear', name=f'convolutions_{idx+1}')) + + def call(self, x, training=None): + o = x + for layer in self.convolutions: + o = layer(o, training=training) + return o + + +class Encoder(keras.layers.Layer): + def __init__(self, output_input_dim, **kwargs): + super(Encoder, self).__init__(**kwargs) + self.convolutions = [] + for idx in range(3): + self.convolutions.append(ConvBNBlock(output_input_dim, 5, 'relu', name=f'convolutions_{idx}')) + self.lstm = keras.layers.Bidirectional(keras.layers.LSTM(output_input_dim // 2, return_sequences=True, use_bias=True), name='lstm') + + def call(self, x, training=None): + o = x + for layer in self.convolutions: + o = layer(o, training=training) + o = self.lstm(o) + return o + + +class Decoder(keras.layers.Layer): + #pylint: disable=unused-argument + def __init__(self, frame_dim, r, attn_type, use_attn_win, attn_norm, prenet_type, + prenet_dropout, use_forward_attn, use_trans_agent, use_forward_attn_mask, + use_location_attn, attn_K, separate_stopnet, speaker_emb_dim, **kwargs): + super(Decoder, self).__init__(**kwargs) + self.frame_dim = frame_dim + self.r_init = tf.constant(r, dtype=tf.int32) + self.r = tf.constant(r, dtype=tf.int32) + self.separate_stopnet = separate_stopnet + self.max_decoder_steps = tf.constant(1000, dtype=tf.int32) + self.stop_thresh = tf.constant(0.5, dtype=tf.float32) + + # model dimensions + self.query_dim = 1024 + self.decoder_rnn_dim = 1024 + self.prenet_dim = 256 + self.attn_dim = 128 + self.p_attention_dropout = 0.1 + self.p_decoder_dropout = 0.1 + + self.prenet = Prenet(prenet_type, + prenet_dropout, + [self.prenet_dim, self.prenet_dim], + bias=False, + name='prenet') + self.attention_rnn = keras.layers.LSTMCell(self.query_dim, use_bias=True, name=f'{self.name}/attention_rnn', ) + self.attention_rnn_dropout = keras.layers.Dropout(0.5) + + # TODO: implement other attn options + self.attention = Attention(attn_dim=self.attn_dim, + use_loc_attn=True, + loc_attn_n_filters=32, + loc_attn_kernel_size=31, + use_windowing=False, + norm=attn_norm, + use_forward_attn=use_forward_attn, + use_trans_agent=use_trans_agent, + use_forward_attn_mask=use_forward_attn_mask, + name='attention') + self.decoder_rnn = keras.layers.LSTMCell(self.decoder_rnn_dim, use_bias=True, name=f'{self.name}/decoder_rnn') + self.decoder_rnn_dropout = keras.layers.Dropout(0.5) + self.linear_projection = keras.layers.Dense(self.frame_dim * r, name=f'{self.name}/linear_projection/linear_layer') + self.stopnet = keras.layers.Dense(1, name=f'{self.name}/stopnet/linear_layer') + + + def set_max_decoder_steps(self, new_max_steps): + self.max_decoder_steps = tf.constant(new_max_steps, dtype=tf.int32) + + def set_r(self, new_r): + self.r = tf.constant(new_r, dtype=tf.int32) + + def build_decoder_initial_states(self, batch_size, memory_dim, memory_length): + zero_frame = tf.zeros([batch_size, self.frame_dim]) + zero_context = tf.zeros([batch_size, memory_dim]) + attention_rnn_state = self.attention_rnn.get_initial_state(batch_size=batch_size, dtype=tf.float32) + decoder_rnn_state = self.decoder_rnn.get_initial_state(batch_size=batch_size, dtype=tf.float32) + attention_states = self.attention.init_states(batch_size, memory_length) + return zero_frame, zero_context, attention_rnn_state, decoder_rnn_state, attention_states + + def step(self, prenet_next, states, + memory_seq_length=None, training=None): + _, context_next, attention_rnn_state, decoder_rnn_state, attention_states = states + attention_rnn_input = tf.concat([prenet_next, context_next], -1) + attention_rnn_output, attention_rnn_state = \ + self.attention_rnn(attention_rnn_input, + attention_rnn_state, training=training) + attention_rnn_output = self.attention_rnn_dropout(attention_rnn_output, training=training) + context, attention, attention_states = self.attention(attention_rnn_output, attention_states, training=training) + decoder_rnn_input = tf.concat([attention_rnn_output, context], -1) + decoder_rnn_output, decoder_rnn_state = \ + self.decoder_rnn(decoder_rnn_input, decoder_rnn_state, training=training) + decoder_rnn_output = self.decoder_rnn_dropout(decoder_rnn_output, training=training) + linear_projection_input = tf.concat([decoder_rnn_output, context], -1) + output_frame = self.linear_projection(linear_projection_input, training=training) + stopnet_input = tf.concat([decoder_rnn_output, output_frame], -1) + stopnet_output = self.stopnet(stopnet_input, training=training) + output_frame = output_frame[:, :self.r * self.frame_dim] + states = (output_frame[:, self.frame_dim * (self.r - 1):], context, attention_rnn_state, decoder_rnn_state, attention_states) + return output_frame, stopnet_output, states, attention + + def decode(self, memory, states, frames, memory_seq_length=None): + B, _, _ = shape_list(memory) + num_iter = shape_list(frames)[1] // self.r + # init states + frame_zero = tf.expand_dims(states[0], 1) + frames = tf.concat([frame_zero, frames], axis=1) + outputs = tf.TensorArray(dtype=tf.float32, size=num_iter) + attentions = tf.TensorArray(dtype=tf.float32, size=num_iter) + stop_tokens = tf.TensorArray(dtype=tf.float32, size=num_iter) + # pre-computes + self.attention.process_values(memory) + prenet_output = self.prenet(frames, training=True) + step_count = tf.constant(0, dtype=tf.int32) + + def _body(step, memory, prenet_output, states, outputs, stop_tokens, attentions): + prenet_next = prenet_output[:, step] + output, stop_token, states, attention = self.step(prenet_next, + states, + memory_seq_length) + outputs = outputs.write(step, output) + attentions = attentions.write(step, attention) + stop_tokens = stop_tokens.write(step, stop_token) + return step + 1, memory, prenet_output, states, outputs, stop_tokens, attentions + _, memory, _, states, outputs, stop_tokens, attentions = \ + tf.while_loop(lambda *arg: True, + _body, + loop_vars=(step_count, memory, prenet_output, + states, outputs, stop_tokens, attentions), + parallel_iterations=32, + swap_memory=True, + maximum_iterations=num_iter) + + outputs = outputs.stack() + attentions = attentions.stack() + stop_tokens = stop_tokens.stack() + outputs = tf.transpose(outputs, [1, 0, 2]) + attentions = tf.transpose(attentions, [1, 0, 2]) + stop_tokens = tf.transpose(stop_tokens, [1, 0, 2]) + stop_tokens = tf.squeeze(stop_tokens, axis=2) + outputs = tf.reshape(outputs, [B, -1, self.frame_dim]) + return outputs, stop_tokens, attentions + + def decode_inference(self, memory, states): + B, _, _ = shape_list(memory) + # init states + outputs = tf.TensorArray(dtype=tf.float32, size=0, clear_after_read=False, dynamic_size=True) + attentions = tf.TensorArray(dtype=tf.float32, size=0, clear_after_read=False, dynamic_size=True) + stop_tokens = tf.TensorArray(dtype=tf.float32, size=0, clear_after_read=False, dynamic_size=True) + # pre-computes + self.attention.process_values(memory) + + # iter vars + stop_flag = tf.constant(False, dtype=tf.bool) + step_count = tf.constant(0, dtype=tf.int32) + + def _body(step, memory, states, outputs, stop_tokens, attentions, stop_flag): + frame_next = states[0] + prenet_next = self.prenet(frame_next, training=False) + output, stop_token, states, attention = self.step(prenet_next, + states, + None, + training=False) + stop_token = tf.math.sigmoid(stop_token) + outputs = outputs.write(step, output) + attentions = attentions.write(step, attention) + stop_tokens = stop_tokens.write(step, stop_token) + stop_flag = tf.greater(stop_token, self.stop_thresh) + stop_flag = tf.reduce_all(stop_flag) + return step + 1, memory, states, outputs, stop_tokens, attentions, stop_flag + + cond = lambda step, m, s, o, st, a, stop_flag: tf.equal(stop_flag, tf.constant(False, dtype=tf.bool)) + _, memory, states, outputs, stop_tokens, attentions, stop_flag = \ + tf.while_loop(cond, + _body, + loop_vars=(step_count, memory, states, outputs, + stop_tokens, attentions, stop_flag), + parallel_iterations=32, + swap_memory=True, + maximum_iterations=self.max_decoder_steps) + + outputs = outputs.stack() + attentions = attentions.stack() + stop_tokens = stop_tokens.stack() + + outputs = tf.transpose(outputs, [1, 0, 2]) + attentions = tf.transpose(attentions, [1, 0, 2]) + stop_tokens = tf.transpose(stop_tokens, [1, 0, 2]) + stop_tokens = tf.squeeze(stop_tokens, axis=2) + outputs = tf.reshape(outputs, [B, -1, self.frame_dim]) + return outputs, stop_tokens, attentions + + def call(self, memory, states, frames=None, memory_seq_length=None, training=False): + if training: + return self.decode(memory, states, frames, memory_seq_length) + return self.decode_inference(memory, states) diff --git a/tf/models/tacotron2.py b/tf/models/tacotron2.py new file mode 100644 index 00000000..101291cf --- /dev/null +++ b/tf/models/tacotron2.py @@ -0,0 +1,81 @@ +from tensorflow import keras + +from TTS.tf.layers.tacotron2 import Encoder, Decoder, Postnet +from TTS.tf.utils.tf_utils import shape_list + + +#pylint: disable=too-many-ancestors +class Tacotron2(keras.models.Model): + def __init__(self, + num_chars, + num_speakers, + r, + postnet_output_dim=80, + decoder_output_dim=80, + attn_type='original', + attn_win=False, + attn_norm="softmax", + attn_K=4, + prenet_type="original", + prenet_dropout=True, + forward_attn=False, + trans_agent=False, + forward_attn_mask=False, + location_attn=True, + separate_stopnet=True, + bidirectional_decoder=False): + super(Tacotron2, self).__init__() + self.r = r + self.decoder_output_dim = decoder_output_dim + self.postnet_output_dim = postnet_output_dim + self.bidirectional_decoder = bidirectional_decoder + self.num_speakers = num_speakers + self.speaker_embed_dim = 256 + + self.embedding = keras.layers.Embedding(num_chars, 512, name='embedding') + self.encoder = Encoder(512, name='encoder') + # TODO: most of the decoder args have no use at the momment + self.decoder = Decoder(decoder_output_dim, + r, + attn_type=attn_type, + use_attn_win=attn_win, + attn_norm=attn_norm, + prenet_type=prenet_type, + prenet_dropout=prenet_dropout, + use_forward_attn=forward_attn, + use_trans_agent=trans_agent, + use_forward_attn_mask=forward_attn_mask, + use_location_attn=location_attn, + attn_K=attn_K, + separate_stopnet=separate_stopnet, + speaker_emb_dim=self.speaker_embed_dim) + self.postnet = Postnet(postnet_output_dim, 5, name='postnet') + + def call(self, characters, text_lengths=None, frames=None, training=None): + if training: + return self.training(characters, text_lengths, frames) + if not training: + return self.inference(characters) + raise RuntimeError(' [!] Set model training mode True or False') + + def training(self, characters, text_lengths, frames): + B, T = shape_list(characters) + embedding_vectors = self.embedding(characters, training=True) + encoder_output = self.encoder(embedding_vectors, training=True) + decoder_states = self.decoder.build_decoder_initial_states(B, 512, T) + decoder_frames, stop_tokens, attentions = self.decoder(encoder_output, decoder_states, frames, text_lengths, training=True) + postnet_frames = self.postnet(decoder_frames, training=True) + output_frames = decoder_frames + postnet_frames + return decoder_frames, output_frames, attentions, stop_tokens + + def inference(self, characters): + B, T = shape_list(characters) + embedding_vectors = self.embedding(characters, training=False) + encoder_output = self.encoder(embedding_vectors, training=False) + decoder_states = self.decoder.build_decoder_initial_states(B, 512, T) + decoder_frames, stop_tokens, attentions = self.decoder(encoder_output, decoder_states, training=False) + postnet_frames = self.postnet(decoder_frames, training=False) + output_frames = decoder_frames + postnet_frames + print(output_frames.shape) + return decoder_frames, output_frames, attentions, stop_tokens + diff --git a/notebooks/Benchmark-PWGAN.ipynb b/tf/notebooks/Benchmark-TTS_tf.ipynb similarity index 64% rename from notebooks/Benchmark-PWGAN.ipynb rename to tf/notebooks/Benchmark-TTS_tf.ipynb index 082ffa60..4a21ae17 100644 --- a/notebooks/Benchmark-PWGAN.ipynb +++ b/tf/notebooks/Benchmark-TTS_tf.ipynb @@ -2,27 +2,35 @@ "cells": [ { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "source": [ - "This is to test TTS models with benchmark sentences for speech synthesis.\n", + "This is to test TTS tensorflow models with benchmark sentences.\n", "\n", "Before running this script please DON'T FORGET: \n", "- to set file paths.\n", - "- to download related model files from TTS and PWGAN.\n", + "- to download related models.\n", + " - Sample TF model: https://www.dropbox.com/sh/3b1fat5oxqab6yn/AADDlNs-9-r7ASbVnFYx3RHHa?dl=0\n", "- download or clone related repos, linked below.\n", "- setup the repositories. ```python setup.py install```\n", - "- to checkout right commit versions (given next to the model) of TTS and PWGAN.\n", - "- to set the right paths in the cell below.\n", + "- to checkout right commit versions (given next to the model in the models page).\n", + "- to set the file paths below.\n", "\n", "Repositories:\n", "- TTS: https://github.com/mozilla/TTS\n", - "- PWGAN: https://github.com/erogol/ParallelWaveGAN" + "- PWGAN: https://github.com/erogol/ParallelWaveGAN (if you like to use a vocoder model)\n", + "\n", + "Known Issues:\n", + "- To load the model second time you need to restart the notebook kernel. \n", + "- Some of the advance methods are not yet implemented for Tensorflow." ] }, { "cell_type": "code", "execution_count": null, "metadata": { + "Collapsed": "false", "scrolled": true }, "outputs": [], @@ -30,9 +38,16 @@ "%load_ext autoreload\n", "%autoreload 2\n", "import os\n", + "\n", + "# you may need to change this depending on your system\n", + "os.environ['CUDA_VISIBLE_DEVICES']='1'\n", + "\n", "import sys\n", "import io\n", "import torch \n", + "import tensorflow as tf\n", + "print(tf.config.list_physical_devices('GPU'))\n", + "\n", "import time\n", "import json\n", "import yaml\n", @@ -44,54 +59,49 @@ "import librosa\n", "import librosa.display\n", "\n", - "from TTS.models.tacotron import Tacotron \n", - "from TTS.layers import *\n", - "from TTS.utils.data import *\n", + "from TTS.tf.models.tacotron2 import Tacotron2\n", + "from TTS.tf.utils.generic_utils import setup_model, load_checkpoint\n", "from TTS.utils.audio import AudioProcessor\n", - "from TTS.utils.generic_utils import load_config, setup_model\n", - "from TTS.utils.text import text_to_sequence\n", + "from TTS.utils.io import load_config\n", "from TTS.utils.synthesis import synthesis\n", "from TTS.utils.visual import visualize\n", "\n", "import IPython\n", "from IPython.display import Audio\n", "\n", - "import os\n", - "\n", - "# you may need to change this depending on your system\n", - "os.environ['CUDA_VISIBLE_DEVICES']='1'\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "def tts(model, text, CONFIG, use_cuda, ap, use_gl, figures=True):\n", " t_1 = time.time()\n", - " waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens = synthesis(model, text, CONFIG, use_cuda, ap, speaker_id, False, CONFIG.enable_eos_bos_chars)\n", + " waveform, alignment, mel_spec, mel_postnet_spec, stop_tokens, inputs = synthesis(model, text, CONFIG, use_cuda, ap, None, None, False, CONFIG.enable_eos_bos_chars, use_gl, backend=BACKEND)\n", " if CONFIG.model == \"Tacotron\" and not use_gl:\n", " # coorect the normalization differences b/w TTS and the Vocoder.\n", " mel_postnet_spec = ap.out_linear_to_mel(mel_postnet_spec.T).T\n", - " mel_postnet_spec = ap._denormalize(mel_postnet_spec)\n", - "# mel_postnet_spec = np.pad(mel_postnet_spec, pad_width=((2, 2), (0, 0)))\n", " print(mel_postnet_spec.shape)\n", " print(\"max- \", mel_postnet_spec.max(), \" -- min- \", mel_postnet_spec.min())\n", " if not use_gl:\n", - " waveform = vocoder_model.inference(torch.FloatTensor(ap_vocoder._normalize(mel_postnet_spec).T).unsqueeze(0), hop_size=ap_vocoder.hop_length)\n", - "# waveform = waveform / abs(waveform).max() * 0.9\n", - " if use_cuda:\n", + " waveform = vocoder_model.inference(torch.FloatTensor(mel_postnet_spec.T).unsqueeze(0))\n", + " mel_postnet_spec = ap._denormalize(mel_postnet_spec.T).T\n", + " if use_cuda and not use_gl:\n", " waveform = waveform.cpu()\n", - " waveform = waveform.numpy()\n", + " waveform = waveform.numpy()\n", + " waveform = waveform.squeeze()\n", " rtf = (time.time() - t_1) / (len(waveform) / ap.sample_rate)\n", " print(waveform.shape)\n", " print(\" > Run-time: {}\".format(time.time() - t_1))\n", " print(\" > Real-time factor: {}\".format(rtf))\n", " if figures: \n", - " visualize(alignment, mel_postnet_spec, stop_tokens, text, ap.hop_length, CONFIG, ap._denormalize(mel_spec)) \n", - " IPython.display.display(Audio(waveform, rate=CONFIG.audio['sample_rate'], normalize=False)) \n", + " visualize(alignment, mel_postnet_spec, stop_tokens, text, ap.hop_length, CONFIG, ap._denormalize(mel_spec.T).T) \n", + " IPython.display.display(Audio(waveform, rate=CONFIG.audio['sample_rate'], normalize=True)) \n", " os.makedirs(OUT_FOLDER, exist_ok=True)\n", " file_name = text.replace(\" \", \"_\").replace(\".\",\"\") + \".wav\"\n", " out_path = os.path.join(OUT_FOLDER, file_name)\n", @@ -102,100 +112,108 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "# Set constants\n", - "ROOT_PATH = '/home/erogol/Models/LJSpeech/ljspeech-bn-December-23-2019_08+34AM-ffea133/'\n", - "MODEL_PATH = ROOT_PATH + '/checkpoint_670000.pth.tar'\n", + "ROOT_PATH = '../torch_model/'\n", + "MODEL_PATH = ROOT_PATH + '/tts_tf_checkpoint_360000.pkl'\n", "CONFIG_PATH = ROOT_PATH + '/config.json'\n", "OUT_FOLDER = '/home/erogol/Dropbox/AudioSamples/benchmark_samples/'\n", "CONFIG = load_config(CONFIG_PATH)\n", - "VOCODER_MODEL_PATH = \"/home/erogol/Models/LJSpeech/pwgan-ljspeech/checkpoint-400000steps.pkl\"\n", - "VOCODER_CONFIG_PATH = \"/home/erogol/Models/LJSpeech/pwgan-ljspeech/config.yml\"\n", - "\n", - "# load PWGAN config\n", - "with open(VOCODER_CONFIG_PATH) as f:\n", - " VOCODER_CONFIG = yaml.load(f, Loader=yaml.Loader)\n", - " \n", "# Run FLAGs\n", - "use_cuda = False\n", - "# Set some config fields manually for testing\n", - "CONFIG.windowing = True\n", - "CONFIG.use_forward_attn = True \n", + "use_cuda = True # use the available GPU (only for torch)\n", "# Set the vocoder\n", - "use_gl = False # use GL if True\n", - "batched_wavernn = True # use batched wavernn inference if True" + "use_gl = True # use GL if True\n", + "BACKEND = 'tf' # set the backend for inference " ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false", + "scrolled": true + }, "outputs": [], "source": [ - "# LOAD TTS MODEL\n", - "from TTS.utils.text.symbols import make_symbols, symbols, phonemes\n", + "from TTS.utils.text.symbols import symbols, phonemes, make_symbols\n", + "from TTS.tf.utils.convert_torch_to_tf_utils import tf_create_dummy_inputs\n", + "c = CONFIG\n", + "num_speakers = 0\n", + "r = 1\n", + "num_chars = len(phonemes) if c.use_phonemes else len(symbols)\n", + "model = setup_model(num_chars, num_speakers, c)\n", "\n", - "# multi speaker \n", - "if CONFIG.use_speaker_embedding:\n", - " speakers = json.load(open(f\"{ROOT_PATH}/speakers.json\", 'r'))\n", - " speakers_idx_to_id = {v: k for k, v in speakers.items()}\n", - "else:\n", - " speakers = []\n", - " speaker_id = None\n", - "\n", - "# if the vocabulary was passed, replace the default\n", - "if 'characters' in CONFIG.keys():\n", - " symbols, phonemes = make_symbols(**CONFIG.characters)\n", - "\n", - "# load the model\n", - "num_chars = len(phonemes) if CONFIG.use_phonemes else len(symbols)\n", - "model = setup_model(num_chars, len(speakers), CONFIG)\n", - "\n", - "# load the audio processor\n", - "ap = AudioProcessor(**CONFIG.audio) \n", - "\n", - "\n", - "# load model state\n", - "cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))\n", - "\n", - "# load the model\n", - "model.load_state_dict(cp['model'])\n", - "if use_cuda:\n", - " model.cuda()\n", - "model.eval()\n", - "print(cp['step'])\n", - "print(cp['r'])\n", - "\n", - "# set model stepsize\n", - "if 'r' in cp:\n", - " model.decoder.set_r(cp['r'])" + "# before loading weights you need to run the model once to generate the variables\n", + "input_ids, input_lengths, mel_outputs, mel_lengths = tf_create_dummy_inputs()\n", + "mel_pred = model(input_ids, training=False)" ] }, { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false", + "scrolled": true + }, + "outputs": [], + "source": [ + "model = load_checkpoint(model, MODEL_PATH)\n", + "# model = tf.function(model, experimental_relax_shapes=True)\n", + "ap = AudioProcessor(**CONFIG.audio) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "# wrapper class to use tf.function\n", + "class ModelInference(tf.keras.Model):\n", + " def __init__(self, model):\n", + " super(ModelInference, self).__init__()\n", + " self.model = model\n", + " \n", + " @tf.function(input_signature=[tf.TensorSpec(shape=(None, None), dtype=tf.int32)])\n", + " def call(self, characters):\n", + " return self.model(characters, training=False)\n", + " \n", + "model = ModelInference(model)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "# LOAD WAVERNN\n", "if use_gl == False:\n", - " from parallel_wavegan.models import ParallelWaveGANGenerator\n", - " from parallel_wavegan.utils.audio import AudioProcessor as AudioProcessorVocoder\n", + " from parallel_wavegan.models import ParallelWaveGANGenerator, MelGANGenerator\n", " \n", - " vocoder_model = ParallelWaveGANGenerator(**VOCODER_CONFIG[\"generator_params\"])\n", + " vocoder_model = MelGANGenerator(**VOCODER_CONFIG[\"generator_params\"])\n", " vocoder_model.load_state_dict(torch.load(VOCODER_MODEL_PATH, map_location=\"cpu\")[\"model\"][\"generator\"])\n", " vocoder_model.remove_weight_norm()\n", - " ap_vocoder = AudioProcessorVocoder(**VOCODER_CONFIG['audio']) \n", + " ap_vocoder = AudioProcessor(**VOCODER_CONFIG['audio']) \n", " if use_cuda:\n", " vocoder_model.cuda()\n", - " vocoder_model.eval();" + " vocoder_model.eval();\n", + " print(count_parameters(vocoder_model))" ] }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "source": [ "### Comparision with https://mycroft.ai/blog/available-voices/" ] @@ -203,21 +221,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "model.eval()\n", - "model.decoder.max_decoder_steps = 2000\n", - "model.decoder.prenet.eval()\n", - "speaker_id = None\n", - "sentence = '''A breeding jennet, lusty, young, and proud,'''\n", - "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Bill got in the habit of asking himself “Is that thought true?” and if he wasn’t absolutely certain it was, he just let it go.\"\n", @@ -226,7 +232,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "source": [ "### https://espnet.github.io/icassp2020-tts/" ] @@ -234,7 +242,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"The Commission also recommends\"\n", @@ -244,7 +254,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"As a result of these studies, the planning document submitted by the Secretary of the Treasury to the Bureau of the Budget on August thirty-one.\"\n", @@ -254,7 +266,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"The FBI now transmits information on all defectors, a category which would, of course, have included Oswald.\"\n", @@ -264,7 +278,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"they seem unduly restrictive in continuing to require some manifestation of animus against a Government official.\"\n", @@ -274,7 +290,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"and each agency given clear understanding of the assistance which the Secret Service expects.\"\n", @@ -283,7 +301,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "source": [ "### Other examples" ] @@ -291,7 +311,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Be a voice, not an echo.\" # 'echo' is not in training set. \n", @@ -301,7 +323,21 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "sentence = \"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.\"\n", + "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"The human voice is the most perfect instrument of all.\"\n", @@ -311,7 +347,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"I'm sorry Dave. I'm afraid I can't do that.\"\n", @@ -321,7 +359,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"This cake is great. It's so delicious and moist.\"\n", @@ -330,7 +370,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "source": [ "### Comparison with https://keithito.github.io/audio-samples/" ] @@ -338,7 +380,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Generative adversarial network or variational auto-encoder.\"\n", @@ -348,7 +392,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Scientists at the CERN laboratory say they have discovered a new particle.\"\n", @@ -358,7 +404,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Here’s a way to measure the acute emotional intelligence that has never gone out of style.\"\n", @@ -368,7 +416,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"President Trump met with other leaders at the Group of 20 conference.\"\n", @@ -378,7 +428,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"The buses aren't the problem, they actually provide a solution.\"\n", @@ -387,7 +439,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "source": [ "### Comparison with https://google.github.io/tacotron/publications/tacotron/index.html" ] @@ -395,7 +449,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Generative adversarial network or variational auto-encoder.\"\n", @@ -405,7 +461,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Basilar membrane and otolaryngology are not auto-correlations.\"\n", @@ -415,7 +473,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \" He has read the whole thing.\"\n", @@ -425,7 +485,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"He reads books.\"\n", @@ -435,7 +497,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Thisss isrealy awhsome.\"\n", @@ -445,7 +509,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"This is your internet browser, Firefox.\"\n", @@ -455,7 +521,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"This is your internet browser Firefox.\"\n", @@ -465,7 +533,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"The quick brown fox jumps over the lazy dog.\"\n", @@ -475,7 +545,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Does the quick brown fox jump over the lazy dog?\"\n", @@ -485,7 +557,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Eren, how are you?\"\n", @@ -494,7 +568,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "source": [ "### Hard Sentences" ] @@ -502,7 +578,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Encouraged, he started with a minute a day.\"\n", @@ -512,7 +590,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"His meditation consisted of “body scanning” which involved focusing his mind and energy on each section of the body from head to toe .\"\n", @@ -522,7 +602,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase the grey matter in the parts of the brain responsible for emotional regulation and learning . \"\n", @@ -532,7 +614,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"If he decided to watch TV he really watched it.\"\n", @@ -542,7 +626,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "sentence = \"Often we try to bring about change through sheer effort and we put all of our energy into a new initiative .\"\n", @@ -552,13 +638,56 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "Collapsed": "false" + }, "outputs": [], "source": [ "# for twb dataset\n", "sentence = \"In our preparation for Easter, God in his providence offers us each year the season of Lent as a sacramental sign of our conversion.\"\n", "align, spec, stop_tokens, wav = tts(model, sentence, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [ + "wavs = []\n", + "model.eval()\n", + "model.decoder.prenet.eval()\n", + "model.decoder.max_decoder_steps = 2000\n", + "# model.decoder.prenet.train()\n", + "speaker_id = None\n", + "sentence = '''This is App Store Optimization report.\n", + "The first tab on the report is App Details. App details report is updated weekly and Datetime column shows the latest report update date. The widget displays the app icon, respective app version, visual assets on the store, app description, latest app update date on the Appstore/Google PlayStore and what’s new section.\n", + "In App Details tab, you can see not only your app but all Delivery Hero apps since we think it can be inspiring to see the other apps, their description and screenshots. \n", + "Product name is the actual app name on the AppStore or Google Play Store.\n", + "Screenshot URLs column display the actual screenshots on the store for the current version. No resizing is done. If you click on the screenshot, you can see it in full-size.\n", + "Current release date show the latest app update date when the query is run. Here we see that Appetito24 Android is updated to app version 4.6.3.2 on 28th of March.\n", + "If the description is too long, clarisights is not able to display the full description; however, if you select description and current_release_date cells to copy and paste it to a text editor, you'll see the full description.\n", + "If you scroll down in the widget, you can see the older app versions for the same apps. Or you can filter Datetime to see a specific timeframe and the apps’ Store presence back then.\n", + "You can also filter for a specific app using Product Name.\n", + "If the description is too long, clarisights is not able to display the full description; however, if you select description and current_release_date cells to copy and paste it to a text editor, you'll see the full description.\n", + "'''\n", + "\n", + "for s in sentence.split('\\n'):\n", + " print(s)\n", + " align, spec, stop_tokens, wav = tts(model, s, CONFIG, use_cuda, ap, use_gl=use_gl, figures=True)\n", + " wavs = np.concatenate([wavs, np.zeros(int(ap.sample_rate * 0.5)), wav])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "Collapsed": "false" + }, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/tf/utils/convert_torch_to_tf_utils.py b/tf/utils/convert_torch_to_tf_utils.py new file mode 100644 index 00000000..e9e1e8a3 --- /dev/null +++ b/tf/utils/convert_torch_to_tf_utils.py @@ -0,0 +1,81 @@ +import numpy as np +import tensorflow as tf + + +def tf_create_dummy_inputs(): + """ Create dummy inputs for TF Tacotron2 model """ + batch_size = 4 + max_input_length = 32 + max_mel_length = 128 + pad = 1 + n_chars = 24 + input_ids = tf.random.uniform([batch_size, max_input_length + pad], maxval=n_chars, dtype=tf.int32) + input_lengths = np.random.randint(0, high=max_input_length+1 + pad, size=[batch_size]) + input_lengths[-1] = max_input_length + input_lengths = tf.convert_to_tensor(input_lengths, dtype=tf.int32) + mel_outputs = tf.random.uniform(shape=[batch_size, max_mel_length + pad, 80]) + mel_lengths = np.random.randint(0, high=max_mel_length+1 + pad, size=[batch_size]) + mel_lengths[-1] = max_mel_length + mel_lengths = tf.convert_to_tensor(mel_lengths, dtype=tf.int32) + return input_ids, input_lengths, mel_outputs, mel_lengths + + +def compare_torch_tf(torch_tensor, tf_tensor): + """ Compute the average absolute difference b/w torch and tf tensors """ + return abs(torch_tensor.detach().numpy() - tf_tensor.numpy()).mean() + + +def convert_tf_name(tf_name): + """ Convert certain patterns in TF layer names to Torch patterns """ + tf_name_tmp = tf_name + tf_name_tmp = tf_name_tmp.replace(':0', '') + tf_name_tmp = tf_name_tmp.replace('/forward_lstm/lstm_cell_1/recurrent_kernel', '/weight_hh_l0') + tf_name_tmp = tf_name_tmp.replace('/forward_lstm/lstm_cell_2/kernel', '/weight_ih_l1') + tf_name_tmp = tf_name_tmp.replace('/recurrent_kernel', '/weight_hh') + tf_name_tmp = tf_name_tmp.replace('/kernel', '/weight') + tf_name_tmp = tf_name_tmp.replace('/gamma', '/weight') + tf_name_tmp = tf_name_tmp.replace('/beta', '/bias') + tf_name_tmp = tf_name_tmp.replace('/', '.') + return tf_name_tmp + + +def transfer_weights_torch_to_tf(tf_vars, var_map_dict, state_dict): + """ Transfer weigths from torch state_dict to TF variables """ + print(" > Passing weights from Torch to TF ...") + for tf_var in tf_vars: + torch_var_name = var_map_dict[tf_var.name] + print(f' | > {tf_var.name} <-- {torch_var_name}') + # if tuple, it is a bias variable + if not isinstance(torch_var_name, tuple): + torch_layer_name = '.'.join(torch_var_name.split('.')[-2:]) + torch_weight = state_dict[torch_var_name] + if 'convolution1d/kernel' in tf_var.name or 'conv1d/kernel' in tf_var.name: + # out_dim, in_dim, filter -> filter, in_dim, out_dim + numpy_weight = torch_weight.permute([2, 1, 0]).detach().cpu().numpy() + elif 'lstm_cell' in tf_var.name and 'kernel' in tf_var.name: + numpy_weight = torch_weight.transpose(0, 1).detach().cpu().numpy() + # if variable is for bidirectional lstm and it is a bias vector there + # needs to be pre-defined two matching torch bias vectors + elif '_lstm/lstm_cell_' in tf_var.name and 'bias' in tf_var.name: + bias_vectors = [value for key, value in state_dict.items() if key in torch_var_name] + assert len(bias_vectors) == 2 + numpy_weight = bias_vectors[0] + bias_vectors[1] + elif 'rnn' in tf_var.name and 'kernel' in tf_var.name: + numpy_weight = torch_weight.transpose(0, 1).detach().cpu().numpy() + elif 'rnn' in tf_var.name and 'bias' in tf_var.name: + bias_vectors = [value for key, value in state_dict.items() if torch_var_name[:-2] in key] + assert len(bias_vectors) == 2 + numpy_weight = bias_vectors[0] + bias_vectors[1] + elif 'linear_layer' in torch_layer_name and 'weight' in torch_var_name: + numpy_weight = torch_weight.transpose(0, 1).detach().cpu().numpy() + else: + numpy_weight = torch_weight.detach().cpu().numpy() + assert np.all(tf_var.shape == numpy_weight.shape), f" [!] weight shapes does not match: {tf_var.name} vs {torch_var_name} --> {tf_var.shape} vs {numpy_weight.shape}" + tf.keras.backend.set_value(tf_var, numpy_weight) + return tf_vars + + +def load_tf_vars(model_tf, tf_vars): + for tf_var in tf_vars: + model_tf.get_layer(tf_var.name).set_weights(tf_var) + return model_tf diff --git a/tf/utils/generic_utils.py b/tf/utils/generic_utils.py new file mode 100644 index 00000000..6368658d --- /dev/null +++ b/tf/utils/generic_utils.py @@ -0,0 +1,99 @@ +import os +import datetime +import importlib +import pickle +import numpy as np +import tensorflow as tf + + +def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder, **kwargs): + checkpoint_path = 'tts_tf_checkpoint_{}.pkl'.format(current_step) + checkpoint_path = os.path.join(output_folder, checkpoint_path) + state = { + 'model': model.weights, + 'optimizer': optimizer, + 'step': current_step, + 'epoch': epoch, + 'date': datetime.date.today().strftime("%B %d, %Y"), + 'r': r + } + state.update(kwargs) + pickle.dump(state, open(checkpoint_path, 'wb')) + + +def load_checkpoint(model, checkpoint_path): + checkpoint = pickle.load(open(checkpoint_path, 'rb')) + chkp_var_dict = {var.name: var.numpy() for var in checkpoint['model']} + tf_vars = model.weights + for tf_var in tf_vars: + layer_name = tf_var.name + chkp_var_value = chkp_var_dict[layer_name] + tf.keras.backend.set_value(tf_var, chkp_var_value) + if 'r' in checkpoint.keys(): + model.decoder.set_r(checkpoint['r']) + return model + + +def sequence_mask(sequence_length, max_len=None): + if max_len is None: + max_len = sequence_length.max() + batch_size = sequence_length.size(0) + seq_range = np.empty([0, max_len], dtype=np.int8) + seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) + if sequence_length.is_cuda: + seq_range_expand = seq_range_expand.cuda() + seq_length_expand = ( + sequence_length.unsqueeze(1).expand_as(seq_range_expand)) + # B x T_max + return seq_range_expand < seq_length_expand + + +# @tf.custom_gradient +def check_gradient(x, grad_clip): + x_normed = tf.clip_by_norm(x, grad_clip) + grad_norm = tf.norm(grad_clip) + return x_normed, grad_norm + + +def count_parameters(model, c): + try: + return model.count_params() + except RuntimeError: + input_dummy = tf.convert_to_tensor(np.random.rand(8, 128).astype('int32')) + input_lengths = np.random.randint(100, 129, (8, )) + input_lengths[-1] = 128 + input_lengths = tf.convert_to_tensor(input_lengths.astype('int32')) + mel_spec = np.random.rand(8, 2 * c.r, + c.audio['num_mels']).astype('float32') + mel_spec = tf.convert_to_tensor(mel_spec) + speaker_ids = np.random.randint( + 0, 5, (8, )) if c.use_speaker_embedding else None + _ = model(input_dummy, input_lengths, mel_spec, speaker_ids=speaker_ids) + return model.count_params() + + +def setup_model(num_chars, num_speakers, c): + print(" > Using model: {}".format(c.model)) + MyModel = importlib.import_module('TTS.tf.models.' + c.model.lower()) + MyModel = getattr(MyModel, c.model) + if c.model.lower() in "tacotron": + raise NotImplementedError(' [!] Tacotron model is not ready.') + # tacotron2 + model = MyModel(num_chars=num_chars, + num_speakers=num_speakers, + r=c.r, + postnet_output_dim=c.audio['num_mels'], + decoder_output_dim=c.audio['num_mels'], + attn_type=c.attention_type, + attn_win=c.windowing, + attn_norm=c.attention_norm, + prenet_type=c.prenet_type, + prenet_dropout=c.prenet_dropout, + forward_attn=c.use_forward_attn, + trans_agent=c.transition_agent, + forward_attn_mask=c.forward_attn_mask, + location_attn=c.location_attn, + attn_K=c.attention_heads, + separate_stopnet=c.separate_stopnet, + bidirectional_decoder=c.bidirectional_decoder) + return model diff --git a/tf/utils/tf_utils.py b/tf/utils/tf_utils.py new file mode 100644 index 00000000..558936d5 --- /dev/null +++ b/tf/utils/tf_utils.py @@ -0,0 +1,8 @@ +import tensorflow as tf + + +def shape_list(x): + """Deal with dynamic shape in tensorflow cleanly.""" + static = x.shape.as_list() + dynamic = tf.shape(x) + return [dynamic[i] if s is None else s for i, s in enumerate(static)] diff --git a/train.py b/train.py index 1444e103..e4963ee7 100644 --- a/train.py +++ b/train.py @@ -14,12 +14,13 @@ from distribute import (DistributedSampler, apply_gradient_allreduce, init_distributed, reduce_tensor) from TTS.layers.losses import TacotronLoss from TTS.utils.audio import AudioProcessor -from TTS.utils.generic_utils import ( - NoamLR, check_update, count_parameters, create_experiment_folder, - get_git_branch, load_config, remove_experiment_folder, save_best_model, - save_checkpoint, adam_weight_decay, set_init_dict, copy_config_file, - setup_model, gradual_training_scheduler, KeepAverage, - set_weight_decay, check_config) +from TTS.utils.generic_utils import (count_parameters, create_experiment_folder, remove_experiment_folder, + get_git_branch, set_init_dict, + setup_model, KeepAverage, check_config) +from TTS.utils.io import (save_best_model, save_checkpoint, + load_config, copy_config_file) +from TTS.utils.training import (NoamLR, check_update, adam_weight_decay, + gradual_training_scheduler, set_weight_decay) from TTS.utils.tensorboard_logger import TensorboardLogger from TTS.utils.console_logger import ConsoleLogger from TTS.utils.speakers import load_speaker_mapping, save_speaker_mapping, \ @@ -128,8 +129,7 @@ def train(model, criterion, optimizer, optimizer_st, scheduler, 'avg_stopnet_loss': 0, 'avg_align_error': 0, 'avg_step_time': 0, - 'avg_loader_time': 0, - 'avg_alignment_score': 0 + 'avg_loader_time': 0 } if c.bidirectional_decoder: train_values['avg_decoder_b_loss'] = 0 # decoder backward loss @@ -190,7 +190,7 @@ def train(model, criterion, optimizer, optimizer_st, scheduler, # backward pass loss_dict['loss'].backward() optimizer, current_lr = adam_weight_decay(optimizer) - grad_norm, grad_flag = check_update(model, c.grad_clip, ignore_stopnet=True) + grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True) optimizer.step() # compute alignment error (the lower the better ) @@ -232,8 +232,7 @@ def train(model, criterion, optimizer, optimizer_st, scheduler, loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus) loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus) loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus) - loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, - num_gpus) if c.stopnet else loss_dict['stopnet_loss'] + loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus) if c.stopnet else loss_dict['stopnet_loss'] if args.rank == 0: # Plot Training Iter Stats @@ -252,9 +251,9 @@ def train(model, criterion, optimizer, optimizer_st, scheduler, if global_step % c.save_step == 0: if c.checkpoint: # save model - save_checkpoint(model, optimizer, optimizer_st, - loss_dict['postnet_loss'].item(), OUT_PATH, global_step, - epoch) + save_checkpoint(model, optimizer, global_step, epoch, model.decoder.r, OUT_PATH, + optimizer_st=optimizer_st, + model_loss=loss_dict['postnet_loss'].item()) # Diagnostic visualizations const_spec = postnet_output[0].data.cpu().numpy() @@ -308,8 +307,6 @@ def train(model, criterion, optimizer, optimizer_st, scheduler, @torch.no_grad() def evaluate(model, criterion, ap, global_step, epoch): data_loader = setup_loader(ap, model.decoder.r, is_val=True) - if c.use_speaker_embedding: - speaker_mapping = load_speaker_mapping(OUT_PATH) model.eval() epoch_time = 0 eval_values_dict = { @@ -587,7 +584,7 @@ def main(args): # pylint: disable=redefined-outer-name model.decoder.set_r(r) if c.bidirectional_decoder: model.decoder_backward.set_r(r) - print("\n > Number of output frames:", model.decoder.r) + print("\n > Number of output frames:", model.decoder.r) train_avg_loss_dict, global_step = train(model, criterion, optimizer, optimizer_st, scheduler, ap, @@ -597,8 +594,8 @@ def main(args): # pylint: disable=redefined-outer-name target_loss = train_avg_loss_dict['avg_postnet_loss'] if c.run_eval: target_loss = eval_avg_loss_dict['avg_postnet_loss'] - best_loss = save_best_model(model, optimizer, target_loss, best_loss, - OUT_PATH, global_step, epoch) + best_loss = save_best_model(target_loss, best_loss, model, optimizer, global_step, epoch, c.r, + OUT_PATH) if __name__ == '__main__': @@ -622,7 +619,7 @@ if __name__ == '__main__': ) parser.add_argument('--debug', type=bool, - default=True, + default=False, help='Do not verify commit integrity to run training.') # DISTRUBUTED diff --git a/utils/audio.py b/utils/audio.py index 413b6163..13eab3d6 100644 --- a/utils/audio.py +++ b/utils/audio.py @@ -157,7 +157,7 @@ class AudioProcessor(object): ### Mean-STD scaling ### def load_stats(self, stats_path): - stats = np.load(stats_path, allow_pickle=True).item() + stats = np.load(stats_path, allow_pickle=True).item() #pylint: disable=unexpected-keyword-arg mel_mean = stats['mel_mean'] mel_std = stats['mel_std'] linear_mean = stats['linear_mean'] diff --git a/utils/console_logger.py b/utils/console_logger.py index 8786120d..5c6ec75f 100644 --- a/utils/console_logger.py +++ b/utils/console_logger.py @@ -1,5 +1,5 @@ import datetime -from TTS.utils.generic_utils import AttrDict +from TTS.utils.io import AttrDict tcolors = AttrDict({ @@ -48,8 +48,8 @@ class ConsoleLogger(): log_text += "{}{}: {:.5f} ({:.5f})\n".format(indent, key, value, avg_loss_dict[f'avg_{key}']) else: log_text += "{}{}: {:.5f} \n".format(indent, key, value) - log_text += f"{indent}avg_spec_len: {avg_spec_length}\n{indent}avg_text_len: {avg_text_length}\n{indent}\ - step_time: {step_time:.2f}\n{indent}loader_time: {loader_time:.2f}\n{indent}lr: {lr:.5f}" + log_text += f"{indent}avg_spec_len: {avg_spec_length}\n{indent}avg_text_len: {avg_text_length}\n{indent}"\ + f"step_time: {step_time:.2f}\n{indent}loader_time: {loader_time:.2f}\n{indent}lr: {lr:.5f}" print(log_text, flush=True) # pylint: disable=unused-argument @@ -66,6 +66,7 @@ class ConsoleLogger(): def print_eval_step(self, step, loss_dict, avg_loss_dict): indent = " | > " + print() log_text = f"{tcolors.BOLD} --> STEP: {step}{tcolors.ENDC}\n" for key, value in loss_dict.items(): # print the avg value if given @@ -81,10 +82,14 @@ class ConsoleLogger(): tcolors.BOLD, tcolors.ENDC) for key, value in avg_loss_dict.items(): # print the avg value if given - color = tcolors.OKGREEN + color = tcolors.FAIL + sign = '+' + diff = 0 if self.old_eval_loss_dict is not None: - if self.old_eval_loss_dict[key] > value: - color = tcolors.FAIL - log_text += "{}{}:{} {:.5f} \n{}".format(indent, key, color, value, tcolors.ENDC) + diff = value - self.old_eval_loss_dict[key] + if diff < 0: + color = tcolors.OKGREEN + sign = '' + log_text += "{}{}:{} {:.5f} {}({}{:.5f})\n".format(indent, key, color, value, tcolors.ENDC, sign, diff) self.old_eval_loss_dict = avg_loss_dict - print(log_text, flush=True) + print(log_text, flush=True) \ No newline at end of file diff --git a/utils/generic_utils.py b/utils/generic_utils.py index 435d2b10..1c7dd5e4 100644 --- a/utils/generic_utils.py +++ b/utils/generic_utils.py @@ -1,31 +1,12 @@ import os -import re import glob +import torch import shutil import datetime -import json -import torch import subprocess import importlib import numpy as np -from collections import OrderedDict, Counter - - -class AttrDict(dict): - def __init__(self, *args, **kwargs): - super(AttrDict, self).__init__(*args, **kwargs) - self.__dict__ = self - - -def load_config(config_path): - config = AttrDict() - with open(config_path, "r") as f: - input_str = f.read() - input_str = re.sub(r'\\\n', '', input_str) - input_str = re.sub(r'//.*\n', '\n', input_str) - data = json.loads(input_str) - config.update(data) - return config +from collections import Counter def get_git_branch(): @@ -60,10 +41,10 @@ def get_commit_hash(): def create_experiment_folder(root_path, model_name, debug): """ Create a folder with the current date and time """ date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I+%M%p") - # if debug: - # commit_hash = 'debug' - # else: - commit_hash = get_commit_hash() + if debug: + commit_hash = 'debug' + else: + commit_hash = get_commit_hash() output_folder = os.path.join( root_path, model_name + '-' + date_str + '-' + commit_hash) os.makedirs(output_folder, exist_ok=True) @@ -77,161 +58,39 @@ def remove_experiment_folder(experiment_path): checkpoint_files = glob.glob(experiment_path + "/*.pth.tar") if not checkpoint_files: if os.path.exists(experiment_path): - shutil.rmtree(experiment_path) + shutil.rmtree(experiment_path, ignore_errors=True) print(" ! Run is removed from {}".format(experiment_path)) else: print(" ! Run is kept in {}".format(experiment_path)) -def copy_config_file(config_file, out_path, new_fields): - config_lines = open(config_file, "r").readlines() - # add extra information fields - for key, value in new_fields.items(): - if type(value) == str: - new_line = '"{}":"{}",\n'.format(key, value) - else: - new_line = '"{}":{},\n'.format(key, value) - config_lines.insert(1, new_line) - config_out_file = open(out_path, "w") - config_out_file.writelines(config_lines) - config_out_file.close() - - -def _trim_model_state_dict(state_dict): - r"""Remove 'module.' prefix from state dictionary. It is necessary as it - is loded for the next time by model.load_state(). Otherwise, it complains - about the torch.DataParallel()""" - - new_state_dict = OrderedDict() - for k, v in state_dict.items(): - name = k[7:] # remove `module.` - new_state_dict[name] = v - return new_state_dict - - -def save_checkpoint(model, optimizer, optimizer_st, model_loss, out_path, - current_step, epoch): - checkpoint_path = 'checkpoint_{}.pth.tar'.format(current_step) - checkpoint_path = os.path.join(out_path, checkpoint_path) - print(" > CHECKPOINT : {}".format(checkpoint_path)) - - new_state_dict = model.state_dict() - state = { - 'model': new_state_dict, - 'optimizer': optimizer.state_dict() if optimizer is not None else None, - 'step': current_step, - 'epoch': epoch, - 'linear_loss': model_loss, - 'date': datetime.date.today().strftime("%B %d, %Y"), - 'r': model.decoder.r - } - torch.save(state, checkpoint_path) - - -def save_best_model(model, optimizer, model_loss, best_loss, out_path, - current_step, epoch): - if model_loss < best_loss: - new_state_dict = model.state_dict() - state = { - 'model': new_state_dict, - 'optimizer': optimizer.state_dict(), - 'step': current_step, - 'epoch': epoch, - 'linear_loss': model_loss, - 'date': datetime.date.today().strftime("%B %d, %Y"), - 'r': model.decoder.r - } - best_loss = model_loss - bestmodel_path = 'best_model.pth.tar' - bestmodel_path = os.path.join(out_path, bestmodel_path) - print(" > BEST MODEL ({0:.5f}) : {1:}".format( - model_loss, bestmodel_path)) - torch.save(state, bestmodel_path) - return best_loss - - -def check_update(model, grad_clip, ignore_stopnet=False): - r'''Check model gradient against unexpected jumps and failures''' - skip_flag = False - if ignore_stopnet: - grad_norm = torch.nn.utils.clip_grad_norm_([param for name, param in model.named_parameters() if 'stopnet' not in name], grad_clip) - else: - grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) - if np.isinf(grad_norm.cpu()): - print(" | > Gradient is INF !!") - skip_flag = True - return grad_norm, skip_flag - - -def lr_decay(init_lr, global_step, warmup_steps): - r'''from https://github.com/r9y9/tacotron_pytorch/blob/master/train.py''' - warmup_steps = float(warmup_steps) - step = global_step + 1. - lr = init_lr * warmup_steps**0.5 * np.minimum(step * warmup_steps**-1.5, - step**-0.5) - return lr - - -def adam_weight_decay(optimizer): - """ - Custom weight decay operation, not effecting grad values. - """ - for group in optimizer.param_groups: - for param in group['params']: - current_lr = group['lr'] - weight_decay = group['weight_decay'] - param.data = param.data.add(-weight_decay * group['lr'], - param.data) - return optimizer, current_lr - -# pylint: disable=dangerous-default-value -def set_weight_decay(model, weight_decay, skip_list={"decoder.attention.v", "rnn", "lstm", "gru", "embedding"}): - """ - Skip biases, BatchNorm parameters, rnns. - and attention projection layer v - """ - decay = [] - no_decay = [] - for name, param in model.named_parameters(): - if not param.requires_grad: - continue - - if len(param.shape) == 1 or any([skip_name in name for skip_name in skip_list]): - no_decay.append(param) - else: - decay.append(param) - return [{ - 'params': no_decay, - 'weight_decay': 0. - }, { - 'params': decay, - 'weight_decay': weight_decay - }] - - -class NoamLR(torch.optim.lr_scheduler._LRScheduler): - def __init__(self, optimizer, warmup_steps=0.1, last_epoch=-1): - self.warmup_steps = float(warmup_steps) - super(NoamLR, self).__init__(optimizer, last_epoch) - - def get_lr(self): - step = max(self.last_epoch, 1) - return [ - base_lr * self.warmup_steps**0.5 * - min(step * self.warmup_steps**-1.5, step**-0.5) - for base_lr in self.base_lrs - ] - - -def mk_decay(init_mk, max_epoch, n_epoch): - return init_mk * ((max_epoch - n_epoch) / max_epoch) - - def count_parameters(model): r"""Count number of trainable parameters in a network""" return sum(p.numel() for p in model.parameters() if p.requires_grad) +def split_dataset(items): + is_multi_speaker = False + speakers = [item[-1] for item in items] + is_multi_speaker = len(set(speakers)) > 1 + eval_split_size = 500 if len(items) * 0.01 > 500 else int( + len(items) * 0.01) + np.random.seed(0) + np.random.shuffle(items) + if is_multi_speaker: + items_eval = [] + # most stupid code ever -- Fix it ! + while len(items_eval) < eval_split_size: + speakers = [item[-1] for item in items] + speaker_counter = Counter(speakers) + item_idx = np.random.randint(0, len(items)) + if speaker_counter[items[item_idx][-1]] > 1: + items_eval.append(items[item_idx]) + del items[item_idx] + return items_eval, items + return items[:eval_split_size], items[eval_split_size:] + + # from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1 def sequence_mask(sequence_length, max_len=None): if max_len is None: @@ -240,7 +99,7 @@ def sequence_mask(sequence_length, max_len=None): seq_range = torch.arange(0, max_len).long() seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) if sequence_length.is_cuda: - seq_range_expand = seq_range_expand.cuda() + seq_range_expand = seq_range_expand.to(sequence_length.device) seq_length_expand = ( sequence_length.unsqueeze(1).expand_as(seq_range_expand)) # B x T_max @@ -322,44 +181,6 @@ def setup_model(num_chars, num_speakers, c): bidirectional_decoder=c.bidirectional_decoder) return model - -def split_dataset(items): - is_multi_speaker = False - speakers = [item[-1] for item in items] - is_multi_speaker = len(set(speakers)) > 1 - eval_split_size = 500 if len(items) * 0.01 > 500 else int( - len(items) * 0.01) - np.random.seed(0) - np.random.shuffle(items) - if is_multi_speaker: - items_eval = [] - # most stupid code ever -- Fix it ! - while len(items_eval) < eval_split_size: - speakers = [item[-1] for item in items] - speaker_counter = Counter(speakers) - item_idx = np.random.randint(0, len(items)) - if speaker_counter[items[item_idx][-1]] > 1: - items_eval.append(items[item_idx]) - del items[item_idx] - return items_eval, items - else: - return items[:eval_split_size], items[eval_split_size:] - - -def gradual_training_scheduler(global_step, config): - """Setup the gradual training schedule wrt number - of active GPUs""" - num_gpus = torch.cuda.device_count() - if num_gpus == 0: - num_gpus = 1 - new_values = None - # we set the scheduling wrt num_gpus - for values in config.gradual_training: - if global_step * num_gpus >= values[0]: - new_values = values - return new_values[1], new_values[2] - - class KeepAverage(): def __init__(self): self.avg_values = {} @@ -410,30 +231,6 @@ def _check_argument(name, c, enum_list=None, max_val=None, min_val=None, restric assert isinstance(c[name], val_type) or c[name] is None, f' [!] {name} has wrong type - {type(c[name])} vs {val_type}' -tcolors = AttrDict({ - 'OKBLUE': '\033[94m', - 'HEADER': '\033[95m', - 'OKGREEN': '\033[92m', - 'WARNING': '\033[93m', - 'FAIL': '\033[91m', - 'ENDC': '\033[0m', - 'BOLD': '\033[1m', - 'UNDERLINE': '\033[4m' -}) - - -def print_train_step(batch_steps, step, global_step, avg_spec_length, avg_text_length, step_time, loader_time, lr, print_dict): - indent = " | > " - print() - log_text = "{} --> STEP: {}/{} -- GLOBAL_STEP: {}{}\n".format(tcolors.BOLD, step, batch_steps, global_step, tcolors.ENDC) - for key, value in print_dict.items(): - log_text += "{}{}: {:.5f}\n".format(indent, key, value) - log_text += f"{indent}avg_spec_len: {avg_spec_length}\n{indent}avg_text_len: {avg_text_length}\ - \n{indent}step_time: {step_time:.2f}\n{indent}loader_time: {loader_time:.2f}\n{indent}lr: {lr:.5f}"\ - .format(indent, avg_spec_length, indent, avg_text_length, indent, step_time, indent, loader_time, indent, lr) - print(log_text, flush=True) - - def check_config(c): _check_argument('model', c, enum_list=['tacotron', 'tacotron2'], restricted=True, val_type=str) _check_argument('run_name', c, restricted=True, val_type=str) diff --git a/utils/io.py b/utils/io.py new file mode 100644 index 00000000..faf00195 --- /dev/null +++ b/utils/io.py @@ -0,0 +1,78 @@ +import os +import json +import re +import torch +import datetime + + +class AttrDict(dict): + def __init__(self, *args, **kwargs): + super(AttrDict, self).__init__(*args, **kwargs) + self.__dict__ = self + + +def load_config(config_path): + config = AttrDict() + with open(config_path, "r") as f: + input_str = f.read() + input_str = re.sub(r'\\\n', '', input_str) + input_str = re.sub(r'//.*\n', '\n', input_str) + data = json.loads(input_str) + config.update(data) + return config + + +def copy_config_file(config_file, out_path, new_fields): + config_lines = open(config_file, "r").readlines() + # add extra information fields + for key, value in new_fields.items(): + if isinstance(value, str): + new_line = '"{}":"{}",\n'.format(key, value) + else: + new_line = '"{}":{},\n'.format(key, value) + config_lines.insert(1, new_line) + config_out_file = open(out_path, "w") + config_out_file.writelines(config_lines) + config_out_file.close() + + +def load_checkpoint(model, checkpoint_path, use_cuda=False): + state = torch.load(checkpoint_path, map_location=torch.device('cpu')) + model.load_state_dict(state['model']) + if use_cuda: + model.cuda() + # set model stepsize + if 'r' in state.keys(): + model.decoder.set_r(state['r']) + return model, state + + +def save_model(model, optimizer, current_step, epoch, r, output_path, **kwargs): + new_state_dict = model.state_dict() + state = { + 'model': new_state_dict, + 'optimizer': optimizer.state_dict() if optimizer is not None else None, + 'step': current_step, + 'epoch': epoch, + 'date': datetime.date.today().strftime("%B %d, %Y"), + 'r': r + } + state.update(kwargs) + torch.save(state, output_path) + + +def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder, **kwargs): + file_name = 'checkpoint_{}.pth.tar'.format(current_step) + checkpoint_path = os.path.join(output_folder, file_name) + print(" > CHECKPOINT : {}".format(checkpoint_path)) + save_model(model, optimizer, current_step, epoch, r, checkpoint_path, **kwargs) + + +def save_best_model(target_loss, best_loss, model, optimizer, current_step, epoch, r, output_folder, **kwargs): + if target_loss < best_loss: + file_name = 'best_model.pth.tar' + checkpoint_path = os.path.join(output_folder, file_name) + print(" > BEST MODEL : {}".format(checkpoint_path)) + save_model(model, optimizer, current_step, epoch, r, checkpoint_path, model_loss=target_loss, **kwargs) + best_loss = target_loss + return best_loss diff --git a/utils/radam.py b/utils/radam.py index 62ecc695..4724b705 100644 --- a/utils/radam.py +++ b/utils/radam.py @@ -1,17 +1,31 @@ +# from https://github.com/LiyuanLucasLiu/RAdam + import math import torch -from torch.optim.optimizer import Optimizer +from torch.optim.optimizer import Optimizer, required -# adapted from https://github.com/LiyuanLucasLiu/RAdam class RAdam(Optimizer): - def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): - defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) - self.buffer = [[None, None, None] for ind in range(10)] + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True): + if lr < 0.0: + raise ValueError("Invalid learning rate: {}".format(lr)) + if eps < 0.0: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + + self.degenerated_to_sgd = degenerated_to_sgd + if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): + for param in params: + if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): + param['buffer'] = [[None, None, None] for _ in range(10)] + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, buffer=[[None, None, None] for _ in range(10)]) super(RAdam, self).__init__(params, defaults) - def __setstate__(self, state): # pylint: disable= useless-super-delegation + def __setstate__(self, state): super(RAdam, self).__setstate__(state) def step(self, closure=None): @@ -27,128 +41,57 @@ class RAdam(Optimizer): continue grad = p.grad.data.float() if grad.is_sparse: - raise RuntimeError( - 'RAdam does not support sparse gradients') + raise RuntimeError('RAdam does not support sparse gradients') p_data_fp32 = p.data.float() state = self.state[p] - if not state: + if len(state) == 0: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p_data_fp32) state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) else: state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) - state['exp_avg_sq'] = state['exp_avg_sq'].type_as( - p_data_fp32) + state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] beta1, beta2 = group['betas'] - exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) - exp_avg.mul_(beta1).add_(1 - beta1, grad) + exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) state['step'] += 1 - buffered = self.buffer[int(state['step'] % 10)] + buffered = group['buffer'][int(state['step'] % 10)] if state['step'] == buffered[0]: N_sma, step_size = buffered[1], buffered[2] else: buffered[0] = state['step'] beta2_t = beta2 ** state['step'] N_sma_max = 2 / (1 - beta2) - 1 - N_sma = N_sma_max - 2 * \ - state['step'] * beta2_t / (1 - beta2_t) + N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) buffered[1] = N_sma # more conservative since it's an approximated value if N_sma >= 5: - step_size = group['lr'] * math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * ( - N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) + step_size = math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) + elif self.degenerated_to_sgd: + step_size = 1.0 / (1 - beta1 ** state['step']) else: - step_size = group['lr'] / (1 - beta1 ** state['step']) + step_size = -1 buffered[2] = step_size - if group['weight_decay'] != 0: - p_data_fp32.add_(-group['weight_decay'] - * group['lr'], p_data_fp32) - # more conservative since it's an approximated value if N_sma >= 5: + if group['weight_decay'] != 0: + p_data_fp32.add_(p_data_fp32, alpha=-group['weight_decay'] * group['lr']) denom = exp_avg_sq.sqrt().add_(group['eps']) - p_data_fp32.addcdiv_(-step_size, exp_avg, denom) - else: - p_data_fp32.add_(-step_size, exp_avg) - - p.data.copy_(p_data_fp32) - - return loss - - -class PlainRAdam(Optimizer): - - def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0): - defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) - - super(PlainRAdam, self).__init__(params, defaults) - - def __setstate__(self, state): # pylint: disable= useless-super-delegation - super(PlainRAdam, self).__setstate__(state) - - def step(self, closure=None): - - loss = None - if closure is not None: - loss = closure() - - for group in self.param_groups: - - for p in group['params']: - if p.grad is None: - continue - grad = p.grad.data.float() - if grad.is_sparse: - raise RuntimeError( - 'RAdam does not support sparse gradients') - - p_data_fp32 = p.data.float() - - state = self.state[p] - - if not state: - state['step'] = 0 - state['exp_avg'] = torch.zeros_like(p_data_fp32) - state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) - else: - state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) - state['exp_avg_sq'] = state['exp_avg_sq'].type_as( - p_data_fp32) - - exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] - beta1, beta2 = group['betas'] - - exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) - exp_avg.mul_(beta1).add_(1 - beta1, grad) - - state['step'] += 1 - beta2_t = beta2 ** state['step'] - N_sma_max = 2 / (1 - beta2) - 1 - N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) - - if group['weight_decay'] != 0: - p_data_fp32.add_(-group['weight_decay'] - * group['lr'], p_data_fp32) - - # more conservative since it's an approximated value - if N_sma >= 5: - step_size = group['lr'] * math.sqrt((1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * ( - N_sma - 2) / N_sma * N_sma_max / (N_sma_max - 2)) / (1 - beta1 ** state['step']) - denom = exp_avg_sq.sqrt().add_(group['eps']) - p_data_fp32.addcdiv_(-step_size, exp_avg, denom) - else: - step_size = group['lr'] / (1 - beta1 ** state['step']) - p_data_fp32.add_(-step_size, exp_avg) - - p.data.copy_(p_data_fp32) + p_data_fp32.addcdiv_(exp_avg, denom, value=-step_size * group['lr']) + p.data.copy_(p_data_fp32) + elif step_size > 0: + if group['weight_decay'] != 0: + p_data_fp32.add_(p_data_fp32, alpha=-group['weight_decay'] * group['lr']) + p_data_fp32.add_(exp_avg, alpha=-step_size * group['lr']) + p.data.copy_(p_data_fp32) return loss diff --git a/utils/synthesis.py b/utils/synthesis.py index 9158ef02..a53c12dc 100644 --- a/utils/synthesis.py +++ b/utils/synthesis.py @@ -1,9 +1,13 @@ +import pkg_resources +installed = {pkg.key for pkg in pkg_resources.working_set} #pylint: disable=not-an-iterable +if 'tensorflow' in installed or 'tensorflow-gpu' in installed: + import tensorflow as tf import torch import numpy as np from .text import text_to_sequence, phoneme_to_sequence -def text_to_seqvec(text, CONFIG, use_cuda): +def text_to_seqvec(text, CONFIG): text_cleaner = [CONFIG.text_cleaner] # text ot phonemes to sequence vector if CONFIG.use_phonemes: @@ -14,23 +18,32 @@ def text_to_seqvec(text, CONFIG, use_cuda): dtype=np.int32) else: seq = np.asarray(text_to_sequence(text, text_cleaner, tp=CONFIG.characters if 'characters' in CONFIG.keys() else None), dtype=np.int32) - # torch tensor - chars_var = torch.from_numpy(seq).unsqueeze(0) - if use_cuda: - chars_var = chars_var.cuda() - return chars_var.long() + return seq -def compute_style_mel(style_wav, ap, use_cuda): - print(style_wav) - style_mel = torch.FloatTensor(ap.melspectrogram( - ap.load_wav(style_wav))).unsqueeze(0) - if use_cuda: - return style_mel.cuda() +def numpy_to_torch(np_array, dtype, cuda=False): + if np_array is None: + return None + tensor = torch.as_tensor(np_array, dtype=dtype) + if cuda: + return tensor.cuda() + return tensor + + +def numpy_to_tf(np_array, dtype): + if np_array is None: + return None + tensor = tf.convert_to_tensor(np_array, dtype=dtype) + return tensor + + +def compute_style_mel(style_wav, ap): + style_mel = ap.melspectrogram( + ap.load_wav(style_wav)).expand_dims(0) return style_mel -def run_model(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None): +def run_model_torch(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None): if CONFIG.use_gst: decoder_output, postnet_output, alignments, stop_tokens = model.inference( inputs, style_mel=style_mel, speaker_ids=speaker_id) @@ -44,11 +57,33 @@ def run_model(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None) return decoder_output, postnet_output, alignments, stop_tokens -def parse_outputs(postnet_output, decoder_output, alignments): +def run_model_tf(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None): + if CONFIG.use_gst and style_mel is not None: + raise NotImplementedError(' [!] GST inference not implemented for TF') + if truncated: + raise NotImplementedError(' [!] Truncated inference not implemented for TF') + if speaker_id is not None: + raise NotImplementedError(' [!] Multi-Speaker not implemented for TF') + # TODO: handle multispeaker case + decoder_output, postnet_output, alignments, stop_tokens = model( + inputs, training=False) + return decoder_output, postnet_output, alignments, stop_tokens + + +def parse_outputs_torch(postnet_output, decoder_output, alignments, stop_tokens): postnet_output = postnet_output[0].data.cpu().numpy() decoder_output = decoder_output[0].data.cpu().numpy() alignment = alignments[0].cpu().data.numpy() - return postnet_output, decoder_output, alignment + stop_tokens = stop_tokens[0].cpu().numpy() + return postnet_output, decoder_output, alignment, stop_tokens + + +def parse_outputs_tf(postnet_output, decoder_output, alignments, stop_tokens): + postnet_output = postnet_output[0].numpy() + decoder_output = decoder_output[0].numpy() + alignment = alignments[0].numpy() + stop_tokens = stop_tokens[0].numpy() + return postnet_output, decoder_output, alignment, stop_tokens def trim_silence(wav, ap): @@ -98,7 +133,8 @@ def synthesis(model, truncated=False, enable_eos_bos_chars=False, #pylint: disable=unused-argument use_griffin_lim=False, - do_trim_silence=False): + do_trim_silence=False, + backend='torch'): """Synthesize voice for the given text. Args: @@ -114,22 +150,37 @@ def synthesis(model, for continuous inference at long texts. enable_eos_bos_chars (bool): enable special chars for end of sentence and start of sentence. do_trim_silence (bool): trim silence after synthesis. + backend (str): tf or torch """ # GST processing style_mel = None if CONFIG.model == "TacotronGST" and style_wav is not None: - style_mel = compute_style_mel(style_wav, ap, use_cuda) + style_mel = compute_style_mel(style_wav, ap) # preprocess the given text - inputs = text_to_seqvec(text, CONFIG, use_cuda) - speaker_id = id_to_torch(speaker_id) - if speaker_id is not None and use_cuda: - speaker_id = speaker_id.cuda() + inputs = text_to_seqvec(text, CONFIG) + # pass tensors to backend + if backend == 'torch': + speaker_id = id_to_torch(speaker_id) + style_mel = numpy_to_torch(style_mel, torch.float, cuda=use_cuda) + inputs = numpy_to_torch(inputs, torch.long, cuda=use_cuda) + inputs = inputs.unsqueeze(0) + else: + # TODO: handle speaker id for tf model + style_mel = numpy_to_tf(style_mel, tf.float32) + inputs = numpy_to_tf(inputs, tf.int32) + inputs = tf.expand_dims(inputs, 0) # synthesize voice - decoder_output, postnet_output, alignments, stop_tokens = run_model( - model, inputs, CONFIG, truncated, speaker_id, style_mel) + if backend == 'torch': + decoder_output, postnet_output, alignments, stop_tokens = run_model_torch( + model, inputs, CONFIG, truncated, speaker_id, style_mel) + postnet_output, decoder_output, alignment, stop_tokens = parse_outputs_torch( + postnet_output, decoder_output, alignments, stop_tokens) + else: + decoder_output, postnet_output, alignments, stop_tokens = run_model_tf( + model, inputs, CONFIG, truncated, speaker_id, style_mel) + postnet_output, decoder_output, alignment, stop_tokens = parse_outputs_tf( + postnet_output, decoder_output, alignments, stop_tokens) # convert outputs to numpy - postnet_output, decoder_output, alignment = parse_outputs( - postnet_output, decoder_output, alignments) # plot results wav = None if use_griffin_lim: diff --git a/utils/training.py b/utils/training.py new file mode 100644 index 00000000..ebf8fd13 --- /dev/null +++ b/utils/training.py @@ -0,0 +1,91 @@ +import torch +import numpy as np + + +def check_update(model, grad_clip, ignore_stopnet=False): + r'''Check model gradient against unexpected jumps and failures''' + skip_flag = False + if ignore_stopnet: + grad_norm = torch.nn.utils.clip_grad_norm_([param for name, param in model.named_parameters() if 'stopnet' not in name], grad_clip) + else: + grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip) + if torch.isinf(grad_norm): + print(" | > Gradient is INF !!") + skip_flag = True + return grad_norm, skip_flag + + +def lr_decay(init_lr, global_step, warmup_steps): + r'''from https://github.com/r9y9/tacotron_pytorch/blob/master/train.py''' + warmup_steps = float(warmup_steps) + step = global_step + 1. + lr = init_lr * warmup_steps**0.5 * np.minimum(step * warmup_steps**-1.5, + step**-0.5) + return lr + + +def adam_weight_decay(optimizer): + """ + Custom weight decay operation, not effecting grad values. + """ + for group in optimizer.param_groups: + for param in group['params']: + current_lr = group['lr'] + weight_decay = group['weight_decay'] + factor = -weight_decay * group['lr'] + param.data = param.data.add(param.data, + alpha=factor) + return optimizer, current_lr + +# pylint: disable=dangerous-default-value +def set_weight_decay(model, weight_decay, skip_list={"decoder.attention.v", "rnn", "lstm", "gru", "embedding"}): + """ + Skip biases, BatchNorm parameters, rnns. + and attention projection layer v + """ + decay = [] + no_decay = [] + for name, param in model.named_parameters(): + if not param.requires_grad: + continue + + if len(param.shape) == 1 or any([skip_name in name for skip_name in skip_list]): + no_decay.append(param) + else: + decay.append(param) + return [{ + 'params': no_decay, + 'weight_decay': 0. + }, { + 'params': decay, + 'weight_decay': weight_decay + }] + + +# pylint: disable=protected-access +class NoamLR(torch.optim.lr_scheduler._LRScheduler): + def __init__(self, optimizer, warmup_steps=0.1, last_epoch=-1): + self.warmup_steps = float(warmup_steps) + super(NoamLR, self).__init__(optimizer, last_epoch) + + def get_lr(self): + step = max(self.last_epoch, 1) + return [ + base_lr * self.warmup_steps**0.5 * + min(step * self.warmup_steps**-1.5, step**-0.5) + for base_lr in self.base_lrs + ] + + +def gradual_training_scheduler(global_step, config): + """Setup the gradual training schedule wrt number + of active GPUs""" + num_gpus = torch.cuda.device_count() + if num_gpus == 0: + num_gpus = 1 + new_values = None + # we set the scheduling wrt num_gpus + for values in config.gradual_training: + if global_step * num_gpus >= values[0]: + new_values = values + return new_values[1], new_values[2] diff --git a/utils/visual.py b/utils/visual.py index 8789cf8f..87fbc8e4 100644 --- a/utils/visual.py +++ b/utils/visual.py @@ -61,7 +61,6 @@ def visualize(alignment, postnet_output, stop_tokens, text, hop_length, CONFIG, plt.yticks(range(len(text)), list(text)) plt.colorbar() # plot stopnet predictions - stop_tokens = stop_tokens.squeeze().detach().to('cpu').numpy() plt.subplot(num_plot, 1, 2) plt.plot(range(len(stop_tokens)), list(stop_tokens)) # plot postnet spectrogram