VCTK recipes (finally 🚀)

pull/887/head
Eren Gölge 2021-10-21 16:19:19 +00:00
parent 70e4d0e524
commit 71180c7962
13 changed files with 574 additions and 6 deletions

View File

@ -1,7 +1,7 @@
import os
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs import AlignTTSConfig, BaseDatasetConfig
from TTS.tts.configs.align_tts_config import AlignTTSConfig, BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.align_tts import AlignTTS
from TTS.utils.audio import AudioProcessor

View File

@ -1,8 +1,8 @@
import os
from TTS.config import BaseAudioConfig, BaseDatasetConfig
from TTS.config.shared_configs import BaseAudioConfig, BaseDatasetConfig
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs import FastPitchConfig
from TTS.tts.configs.fast_pitch_config import FastPitchConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.forward_tts import ForwardTTS
from TTS.utils.audio import AudioProcessor

View File

@ -2,7 +2,7 @@ import os
from TTS.config import BaseAudioConfig, BaseDatasetConfig
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs import FastSpeechConfig
from TTS.tts.configs.fast_speech_config import FastSpeechConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.forward_tts import ForwardTTS
from TTS.utils.audio import AudioProcessor

View File

@ -1,7 +1,8 @@
import os
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs import BaseDatasetConfig, GlowTTSConfig
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from TTS.tts.configs.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.glow_tts import GlowTTS
from TTS.utils.audio import AudioProcessor

View File

@ -2,7 +2,7 @@ import os
from TTS.config import BaseAudioConfig, BaseDatasetConfig
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs import SpeedySpeechConfig
from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.forward_tts import ForwardTTS
from TTS.utils.audio import AudioProcessor

View File

@ -0,0 +1,12 @@
#!/usr/bin/env bash
# take the scripts's parent's directory to prefix all the output paths.
RUN_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
echo $RUN_DIR
# download LJSpeech dataset
wget https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip -O VCTK-Corpus-0.92.zip
# extract
mkdir VCTK
unzip VCTK-Corpus-0.92 -d VCTK
# create train-val splits
mv VCTK $RUN_DIR/recipes/vctk/
rm VCTK-Corpus-0.92.zip

View File

@ -0,0 +1,80 @@
import os
from TTS.config import BaseAudioConfig, BaseDatasetConfig
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs.fast_pitch_config import FastPitchConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.forward_tts import ForwardTTS
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.audio import AudioProcessor
output_path = os.path.dirname(os.path.abspath(__file__))
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
audio_config = BaseAudioConfig(
sample_rate=22050,
do_trim_silence=True,
trim_db=23.0,
signal_norm=False,
mel_fmin=0.0,
mel_fmax=8000,
spec_gain=1.0,
log_func="np.log",
ref_level_db=20,
preemphasis=0.0,
)
config = FastPitchConfig(
run_name="fast_pitch_ljspeech",
audio=audio_config,
batch_size=32,
eval_batch_size=16,
num_loader_workers=8,
num_eval_loader_workers=4,
compute_input_seq_cache=True,
compute_f0=True,
f0_cache_path=os.path.join(output_path, "f0_cache"),
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
text_cleaner="english_cleaners",
use_phonemes=True,
use_espeak_phonemes=False,
phoneme_language="en-us",
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
print_step=50,
print_eval=False,
mixed_precision=False,
sort_by_audio_len=True,
max_seq_len=500000,
output_path=output_path,
datasets=[dataset_config],
use_speaker_embedding=True,
)
# init audio processor
ap = AudioProcessor(**config.audio)
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
config.model_args.num_speakers = speaker_manager.num_speakers
# init model
model = ForwardTTS(config, speaker_manager)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()

View File

@ -0,0 +1,80 @@
import os
from TTS.config import BaseAudioConfig, BaseDatasetConfig
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs.fast_speech_config import FastSpeechConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.forward_tts import ForwardTTS
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.audio import AudioProcessor
output_path = os.path.dirname(os.path.abspath(__file__))
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
audio_config = BaseAudioConfig(
sample_rate=22050,
do_trim_silence=True,
trim_db=23.0,
signal_norm=False,
mel_fmin=0.0,
mel_fmax=8000,
spec_gain=1.0,
log_func="np.log",
ref_level_db=20,
preemphasis=0.0,
)
config = FastSpeechConfig(
run_name="fast_pitch_ljspeech",
audio=audio_config,
batch_size=32,
eval_batch_size=16,
num_loader_workers=8,
num_eval_loader_workers=4,
compute_input_seq_cache=True,
compute_f0=True,
f0_cache_path=os.path.join(output_path, "f0_cache"),
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
text_cleaner="english_cleaners",
use_phonemes=True,
use_espeak_phonemes=False,
phoneme_language="en-us",
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
print_step=50,
print_eval=False,
mixed_precision=False,
sort_by_audio_len=True,
max_seq_len=500000,
output_path=output_path,
datasets=[dataset_config],
use_speaker_embedding=True,
)
# init audio processor
ap = AudioProcessor(**config.audio)
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
config.model_args.num_speakers = speaker_manager.num_speakers
# init model
model = ForwardTTS(config, speaker_manager)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()

View File

@ -0,0 +1,62 @@
import os
from TTS.config.shared_configs import BaseAudioConfig
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from TTS.tts.configs.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.glow_tts import GlowTTS
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.audio import AudioProcessor
output_path = os.path.dirname(os.path.abspath(__file__))
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
audio_config = BaseAudioConfig(sample_rate=22050, do_trim_silence=True, trim_db=23.0)
config = GlowTTSConfig(
batch_size=64,
eval_batch_size=16,
num_loader_workers=4,
num_eval_loader_workers=4,
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
text_cleaner="phoneme_cleaners",
use_phonemes=True,
phoneme_language="en-us",
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
print_step=25,
print_eval=False,
mixed_precision=True,
output_path=output_path,
datasets=[dataset_config],
use_speaker_embedding=True,
)
# init audio processor
ap = AudioProcessor(**config.audio.to_dict())
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
config.num_speakers = speaker_manager.num_speakers
# init model
model = GlowTTS(config, speaker_manager)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()

View File

@ -0,0 +1,80 @@
import os
from TTS.config import BaseAudioConfig, BaseDatasetConfig
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.forward_tts import ForwardTTS
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.audio import AudioProcessor
output_path = os.path.dirname(os.path.abspath(__file__))
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
audio_config = BaseAudioConfig(
sample_rate=22050,
do_trim_silence=True,
trim_db=23.0,
signal_norm=False,
mel_fmin=0.0,
mel_fmax=8000,
spec_gain=1.0,
log_func="np.log",
ref_level_db=20,
preemphasis=0.0,
)
config = SpeedySpeechConfig(
run_name="fast_pitch_ljspeech",
audio=audio_config,
batch_size=32,
eval_batch_size=16,
num_loader_workers=8,
num_eval_loader_workers=4,
compute_input_seq_cache=True,
compute_f0=True,
f0_cache_path=os.path.join(output_path, "f0_cache"),
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
text_cleaner="english_cleaners",
use_phonemes=True,
use_espeak_phonemes=False,
phoneme_language="en-us",
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
print_step=50,
print_eval=False,
mixed_precision=False,
sort_by_audio_len=True,
max_seq_len=500000,
output_path=output_path,
datasets=[dataset_config],
use_speaker_embedding=True,
)
# init audio processor
ap = AudioProcessor(**config.audio)
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
config.model_args.num_speakers = speaker_manager.num_speakers
# init model
model = ForwardTTS(config, speaker_manager)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()

View File

@ -0,0 +1,80 @@
import os
from TTS.config.shared_configs import BaseAudioConfig
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs.shared_configs import BaseDatasetConfig
from TTS.tts.configs.tacotron_config import TacotronConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.tacotron import Tacotron
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.audio import AudioProcessor
output_path = os.path.dirname(os.path.abspath(__file__))
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
audio_config = BaseAudioConfig(
sample_rate=22050,
resample=True, # Resample to 22050 Hz. It slows down training. Use `TTS/bin/resample.py` to pre-resample and set this False for faster training.
do_trim_silence=True,
trim_db=23.0,
signal_norm=False,
mel_fmin=0.0,
mel_fmax=8000,
spec_gain=1.0,
log_func="np.log",
ref_level_db=20,
preemphasis=0.0,
)
config = TacotronConfig( # This is the config that is saved for the future use
audio=audio_config,
batch_size=48,
eval_batch_size=16,
num_loader_workers=4,
num_eval_loader_workers=4,
run_eval=True,
test_delay_epochs=-1,
r=6,
gradual_training=[[0, 6, 48], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]],
double_decoder_consistency=True,
epochs=1000,
text_cleaner="phoneme_cleaners",
use_phonemes=True,
phoneme_language="en-us",
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
print_step=25,
print_eval=False,
mixed_precision=True,
sort_by_audio_len=True,
min_seq_len=0,
max_seq_len=44000 * 10, # 44k is the original sampling rate before resampling, corresponds to 10 seconds of audio
output_path=output_path,
datasets=[dataset_config],
use_speaker_embedding=True, # set this to enable multi-sepeaker training
)
# init audio processor
ap = AudioProcessor(**config.audio.to_dict())
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init speaker manager for multi-speaker training
# it mainly handles speaker-id to speaker-name for the model and the data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
# init model
model = Tacotron(config, speaker_manager)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()

View File

@ -0,0 +1,87 @@
import os
from TTS.config.shared_configs import BaseAudioConfig
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs.shared_configs import BaseDatasetConfig
from TTS.tts.configs.tacotron2_config import Tacotron2Config
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.tacotron2 import Tacotron2
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.audio import AudioProcessor
output_path = os.path.dirname(os.path.abspath(__file__))
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
audio_config = BaseAudioConfig(
sample_rate=22050,
resample=False, # Resample to 22050 Hz. It slows down training. Use `TTS/bin/resample.py` to pre-resample and set this False for faster training.
do_trim_silence=True,
trim_db=23.0,
signal_norm=False,
mel_fmin=0.0,
mel_fmax=8000,
spec_gain=1.0,
log_func="np.log",
preemphasis=0.0,
)
config = Tacotron2Config( # This is the config that is saved for the future use
audio=audio_config,
batch_size=32,
eval_batch_size=16,
num_loader_workers=4,
num_eval_loader_workers=4,
run_eval=True,
test_delay_epochs=-1,
r=2,
# gradual_training=[[0, 6, 48], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]],
double_decoder_consistency=False,
epochs=1000,
text_cleaner="phoneme_cleaners",
use_phonemes=True,
phoneme_language="en-us",
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
print_step=150,
print_eval=False,
mixed_precision=True,
sort_by_audio_len=True,
min_seq_len=14800,
max_seq_len=22050 * 10, # 44k is the original sampling rate before resampling, corresponds to 10 seconds of audio
output_path=output_path,
datasets=[dataset_config],
use_speaker_embedding=True, # set this to enable multi-sepeaker training
decoder_ssim_alpha=0.0, # disable ssim losses that causes NaN for some runs.
postnet_ssim_alpha=0.0,
postnet_diff_spec_alpha=0.0,
decoder_diff_spec_alpha=0.0,
attention_norm="softmax",
optimizer="Adam",
lr_scheduler=None,
lr=3e-5,
)
# init audio processor
ap = AudioProcessor(**config.audio.to_dict())
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init speaker manager for multi-speaker training
# it mainly handles speaker-id to speaker-name for the model and the data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
# init model
model = Tacotron2(config, speaker_manager)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()

View File

@ -0,0 +1,86 @@
import os
from TTS.config.shared_configs import BaseAudioConfig
from TTS.trainer import Trainer, TrainingArgs
from TTS.tts.configs.shared_configs import BaseDatasetConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import Vits
from TTS.tts.utils.speakers import SpeakerManager
from TTS.utils.audio import AudioProcessor
output_path = os.path.dirname(os.path.abspath(__file__))
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
audio_config = BaseAudioConfig(
sample_rate=22050,
win_length=1024,
hop_length=256,
num_mels=80,
preemphasis=0.0,
ref_level_db=20,
log_func="np.log",
do_trim_silence=True,
trim_db=23.0,
mel_fmin=0,
mel_fmax=None,
spec_gain=1.0,
signal_norm=False,
do_amp_to_db_linear=False,
resample=True,
)
config = VitsConfig(
audio=audio_config,
run_name="vits_vctk",
use_speaker_embedding=True,
batch_size=32,
eval_batch_size=16,
batch_group_size=5,
num_loader_workers=4,
num_eval_loader_workers=4,
run_eval=True,
test_delay_epochs=-1,
epochs=1000,
text_cleaner="english_cleaners",
use_phonemes=True,
phoneme_language="en-us",
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
compute_input_seq_cache=True,
print_step=25,
print_eval=False,
mixed_precision=True,
sort_by_audio_len=True,
min_seq_len=32 * 256 * 4,
max_seq_len=1500000,
output_path=output_path,
datasets=[dataset_config],
)
# init audio processor
ap = AudioProcessor(**config.audio.to_dict())
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader
speaker_manager = SpeakerManager()
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
config.model_args.num_speakers = speaker_manager.num_speakers
# init model
model = Vits(config, speaker_manager)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()