mirror of https://github.com/coqui-ai/TTS.git
VCTK recipes (finally 🚀)
parent
70e4d0e524
commit
71180c7962
|
@ -1,7 +1,7 @@
|
|||
import os
|
||||
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs import AlignTTSConfig, BaseDatasetConfig
|
||||
from TTS.tts.configs.align_tts_config import AlignTTSConfig, BaseDatasetConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.align_tts import AlignTTS
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
import os
|
||||
|
||||
from TTS.config import BaseAudioConfig, BaseDatasetConfig
|
||||
from TTS.config.shared_configs import BaseAudioConfig, BaseDatasetConfig
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs import FastPitchConfig
|
||||
from TTS.tts.configs.fast_pitch_config import FastPitchConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.forward_tts import ForwardTTS
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
|
|
@ -2,7 +2,7 @@ import os
|
|||
|
||||
from TTS.config import BaseAudioConfig, BaseDatasetConfig
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs import FastSpeechConfig
|
||||
from TTS.tts.configs.fast_speech_config import FastSpeechConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.forward_tts import ForwardTTS
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
import os
|
||||
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs import BaseDatasetConfig, GlowTTSConfig
|
||||
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
|
||||
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.glow_tts import GlowTTS
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
|
|
@ -2,7 +2,7 @@ import os
|
|||
|
||||
from TTS.config import BaseAudioConfig, BaseDatasetConfig
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs import SpeedySpeechConfig
|
||||
from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.forward_tts import ForwardTTS
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
|
|
@ -0,0 +1,12 @@
|
|||
#!/usr/bin/env bash
|
||||
# take the scripts's parent's directory to prefix all the output paths.
|
||||
RUN_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )"
|
||||
echo $RUN_DIR
|
||||
# download LJSpeech dataset
|
||||
wget https://datashare.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip -O VCTK-Corpus-0.92.zip
|
||||
# extract
|
||||
mkdir VCTK
|
||||
unzip VCTK-Corpus-0.92 -d VCTK
|
||||
# create train-val splits
|
||||
mv VCTK $RUN_DIR/recipes/vctk/
|
||||
rm VCTK-Corpus-0.92.zip
|
|
@ -0,0 +1,80 @@
|
|||
import os
|
||||
|
||||
from TTS.config import BaseAudioConfig, BaseDatasetConfig
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs.fast_pitch_config import FastPitchConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.forward_tts import ForwardTTS
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
|
||||
|
||||
audio_config = BaseAudioConfig(
|
||||
sample_rate=22050,
|
||||
do_trim_silence=True,
|
||||
trim_db=23.0,
|
||||
signal_norm=False,
|
||||
mel_fmin=0.0,
|
||||
mel_fmax=8000,
|
||||
spec_gain=1.0,
|
||||
log_func="np.log",
|
||||
ref_level_db=20,
|
||||
preemphasis=0.0,
|
||||
)
|
||||
|
||||
config = FastPitchConfig(
|
||||
run_name="fast_pitch_ljspeech",
|
||||
audio=audio_config,
|
||||
batch_size=32,
|
||||
eval_batch_size=16,
|
||||
num_loader_workers=8,
|
||||
num_eval_loader_workers=4,
|
||||
compute_input_seq_cache=True,
|
||||
compute_f0=True,
|
||||
f0_cache_path=os.path.join(output_path, "f0_cache"),
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
epochs=1000,
|
||||
text_cleaner="english_cleaners",
|
||||
use_phonemes=True,
|
||||
use_espeak_phonemes=False,
|
||||
phoneme_language="en-us",
|
||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||
print_step=50,
|
||||
print_eval=False,
|
||||
mixed_precision=False,
|
||||
sort_by_audio_len=True,
|
||||
max_seq_len=500000,
|
||||
output_path=output_path,
|
||||
datasets=[dataset_config],
|
||||
use_speaker_embedding=True,
|
||||
)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio)
|
||||
|
||||
# load training samples
|
||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||
|
||||
# init speaker manager for multi-speaker training
|
||||
# it maps speaker-id to speaker-name in the model and data-loader
|
||||
speaker_manager = SpeakerManager()
|
||||
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
|
||||
config.model_args.num_speakers = speaker_manager.num_speakers
|
||||
|
||||
# init model
|
||||
model = ForwardTTS(config, speaker_manager)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
|
@ -0,0 +1,80 @@
|
|||
import os
|
||||
|
||||
from TTS.config import BaseAudioConfig, BaseDatasetConfig
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs.fast_speech_config import FastSpeechConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.forward_tts import ForwardTTS
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
|
||||
|
||||
audio_config = BaseAudioConfig(
|
||||
sample_rate=22050,
|
||||
do_trim_silence=True,
|
||||
trim_db=23.0,
|
||||
signal_norm=False,
|
||||
mel_fmin=0.0,
|
||||
mel_fmax=8000,
|
||||
spec_gain=1.0,
|
||||
log_func="np.log",
|
||||
ref_level_db=20,
|
||||
preemphasis=0.0,
|
||||
)
|
||||
|
||||
config = FastSpeechConfig(
|
||||
run_name="fast_pitch_ljspeech",
|
||||
audio=audio_config,
|
||||
batch_size=32,
|
||||
eval_batch_size=16,
|
||||
num_loader_workers=8,
|
||||
num_eval_loader_workers=4,
|
||||
compute_input_seq_cache=True,
|
||||
compute_f0=True,
|
||||
f0_cache_path=os.path.join(output_path, "f0_cache"),
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
epochs=1000,
|
||||
text_cleaner="english_cleaners",
|
||||
use_phonemes=True,
|
||||
use_espeak_phonemes=False,
|
||||
phoneme_language="en-us",
|
||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||
print_step=50,
|
||||
print_eval=False,
|
||||
mixed_precision=False,
|
||||
sort_by_audio_len=True,
|
||||
max_seq_len=500000,
|
||||
output_path=output_path,
|
||||
datasets=[dataset_config],
|
||||
use_speaker_embedding=True,
|
||||
)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio)
|
||||
|
||||
# load training samples
|
||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||
|
||||
# init speaker manager for multi-speaker training
|
||||
# it maps speaker-id to speaker-name in the model and data-loader
|
||||
speaker_manager = SpeakerManager()
|
||||
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
|
||||
config.model_args.num_speakers = speaker_manager.num_speakers
|
||||
|
||||
# init model
|
||||
model = ForwardTTS(config, speaker_manager)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
|
@ -0,0 +1,62 @@
|
|||
import os
|
||||
|
||||
from TTS.config.shared_configs import BaseAudioConfig
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
|
||||
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.glow_tts import GlowTTS
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
|
||||
|
||||
audio_config = BaseAudioConfig(sample_rate=22050, do_trim_silence=True, trim_db=23.0)
|
||||
|
||||
config = GlowTTSConfig(
|
||||
batch_size=64,
|
||||
eval_batch_size=16,
|
||||
num_loader_workers=4,
|
||||
num_eval_loader_workers=4,
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
epochs=1000,
|
||||
text_cleaner="phoneme_cleaners",
|
||||
use_phonemes=True,
|
||||
phoneme_language="en-us",
|
||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||
print_step=25,
|
||||
print_eval=False,
|
||||
mixed_precision=True,
|
||||
output_path=output_path,
|
||||
datasets=[dataset_config],
|
||||
use_speaker_embedding=True,
|
||||
)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio.to_dict())
|
||||
|
||||
# load training samples
|
||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||
|
||||
# init speaker manager for multi-speaker training
|
||||
# it maps speaker-id to speaker-name in the model and data-loader
|
||||
speaker_manager = SpeakerManager()
|
||||
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
|
||||
config.num_speakers = speaker_manager.num_speakers
|
||||
|
||||
# init model
|
||||
model = GlowTTS(config, speaker_manager)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
|
@ -0,0 +1,80 @@
|
|||
import os
|
||||
|
||||
from TTS.config import BaseAudioConfig, BaseDatasetConfig
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.forward_tts import ForwardTTS
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
|
||||
|
||||
audio_config = BaseAudioConfig(
|
||||
sample_rate=22050,
|
||||
do_trim_silence=True,
|
||||
trim_db=23.0,
|
||||
signal_norm=False,
|
||||
mel_fmin=0.0,
|
||||
mel_fmax=8000,
|
||||
spec_gain=1.0,
|
||||
log_func="np.log",
|
||||
ref_level_db=20,
|
||||
preemphasis=0.0,
|
||||
)
|
||||
|
||||
config = SpeedySpeechConfig(
|
||||
run_name="fast_pitch_ljspeech",
|
||||
audio=audio_config,
|
||||
batch_size=32,
|
||||
eval_batch_size=16,
|
||||
num_loader_workers=8,
|
||||
num_eval_loader_workers=4,
|
||||
compute_input_seq_cache=True,
|
||||
compute_f0=True,
|
||||
f0_cache_path=os.path.join(output_path, "f0_cache"),
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
epochs=1000,
|
||||
text_cleaner="english_cleaners",
|
||||
use_phonemes=True,
|
||||
use_espeak_phonemes=False,
|
||||
phoneme_language="en-us",
|
||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||
print_step=50,
|
||||
print_eval=False,
|
||||
mixed_precision=False,
|
||||
sort_by_audio_len=True,
|
||||
max_seq_len=500000,
|
||||
output_path=output_path,
|
||||
datasets=[dataset_config],
|
||||
use_speaker_embedding=True,
|
||||
)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio)
|
||||
|
||||
# load training samples
|
||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||
|
||||
# init speaker manager for multi-speaker training
|
||||
# it maps speaker-id to speaker-name in the model and data-loader
|
||||
speaker_manager = SpeakerManager()
|
||||
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
|
||||
config.model_args.num_speakers = speaker_manager.num_speakers
|
||||
|
||||
# init model
|
||||
model = ForwardTTS(config, speaker_manager)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
|
@ -0,0 +1,80 @@
|
|||
import os
|
||||
|
||||
from TTS.config.shared_configs import BaseAudioConfig
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
||||
from TTS.tts.configs.tacotron_config import TacotronConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.tacotron import Tacotron
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
|
||||
|
||||
audio_config = BaseAudioConfig(
|
||||
sample_rate=22050,
|
||||
resample=True, # Resample to 22050 Hz. It slows down training. Use `TTS/bin/resample.py` to pre-resample and set this False for faster training.
|
||||
do_trim_silence=True,
|
||||
trim_db=23.0,
|
||||
signal_norm=False,
|
||||
mel_fmin=0.0,
|
||||
mel_fmax=8000,
|
||||
spec_gain=1.0,
|
||||
log_func="np.log",
|
||||
ref_level_db=20,
|
||||
preemphasis=0.0,
|
||||
)
|
||||
|
||||
config = TacotronConfig( # This is the config that is saved for the future use
|
||||
audio=audio_config,
|
||||
batch_size=48,
|
||||
eval_batch_size=16,
|
||||
num_loader_workers=4,
|
||||
num_eval_loader_workers=4,
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
r=6,
|
||||
gradual_training=[[0, 6, 48], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]],
|
||||
double_decoder_consistency=True,
|
||||
epochs=1000,
|
||||
text_cleaner="phoneme_cleaners",
|
||||
use_phonemes=True,
|
||||
phoneme_language="en-us",
|
||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||
print_step=25,
|
||||
print_eval=False,
|
||||
mixed_precision=True,
|
||||
sort_by_audio_len=True,
|
||||
min_seq_len=0,
|
||||
max_seq_len=44000 * 10, # 44k is the original sampling rate before resampling, corresponds to 10 seconds of audio
|
||||
output_path=output_path,
|
||||
datasets=[dataset_config],
|
||||
use_speaker_embedding=True, # set this to enable multi-sepeaker training
|
||||
)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio.to_dict())
|
||||
|
||||
# load training samples
|
||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||
|
||||
# init speaker manager for multi-speaker training
|
||||
# it mainly handles speaker-id to speaker-name for the model and the data-loader
|
||||
speaker_manager = SpeakerManager()
|
||||
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
|
||||
|
||||
# init model
|
||||
model = Tacotron(config, speaker_manager)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
|
@ -0,0 +1,87 @@
|
|||
import os
|
||||
|
||||
from TTS.config.shared_configs import BaseAudioConfig
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
||||
from TTS.tts.configs.tacotron2_config import Tacotron2Config
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.tacotron2 import Tacotron2
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
|
||||
|
||||
audio_config = BaseAudioConfig(
|
||||
sample_rate=22050,
|
||||
resample=False, # Resample to 22050 Hz. It slows down training. Use `TTS/bin/resample.py` to pre-resample and set this False for faster training.
|
||||
do_trim_silence=True,
|
||||
trim_db=23.0,
|
||||
signal_norm=False,
|
||||
mel_fmin=0.0,
|
||||
mel_fmax=8000,
|
||||
spec_gain=1.0,
|
||||
log_func="np.log",
|
||||
preemphasis=0.0,
|
||||
)
|
||||
|
||||
config = Tacotron2Config( # This is the config that is saved for the future use
|
||||
audio=audio_config,
|
||||
batch_size=32,
|
||||
eval_batch_size=16,
|
||||
num_loader_workers=4,
|
||||
num_eval_loader_workers=4,
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
r=2,
|
||||
# gradual_training=[[0, 6, 48], [10000, 4, 32], [50000, 3, 32], [100000, 2, 32]],
|
||||
double_decoder_consistency=False,
|
||||
epochs=1000,
|
||||
text_cleaner="phoneme_cleaners",
|
||||
use_phonemes=True,
|
||||
phoneme_language="en-us",
|
||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||
print_step=150,
|
||||
print_eval=False,
|
||||
mixed_precision=True,
|
||||
sort_by_audio_len=True,
|
||||
min_seq_len=14800,
|
||||
max_seq_len=22050 * 10, # 44k is the original sampling rate before resampling, corresponds to 10 seconds of audio
|
||||
output_path=output_path,
|
||||
datasets=[dataset_config],
|
||||
use_speaker_embedding=True, # set this to enable multi-sepeaker training
|
||||
decoder_ssim_alpha=0.0, # disable ssim losses that causes NaN for some runs.
|
||||
postnet_ssim_alpha=0.0,
|
||||
postnet_diff_spec_alpha=0.0,
|
||||
decoder_diff_spec_alpha=0.0,
|
||||
attention_norm="softmax",
|
||||
optimizer="Adam",
|
||||
lr_scheduler=None,
|
||||
lr=3e-5,
|
||||
)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio.to_dict())
|
||||
|
||||
# load training samples
|
||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||
|
||||
# init speaker manager for multi-speaker training
|
||||
# it mainly handles speaker-id to speaker-name for the model and the data-loader
|
||||
speaker_manager = SpeakerManager()
|
||||
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
|
||||
|
||||
# init model
|
||||
model = Tacotron2(config, speaker_manager)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
|
@ -0,0 +1,86 @@
|
|||
import os
|
||||
|
||||
from TTS.config.shared_configs import BaseAudioConfig
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
||||
from TTS.tts.configs.vits_config import VitsConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.vits import Vits
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
dataset_config = BaseDatasetConfig(name="vctk", meta_file_train="", path=os.path.join(output_path, "../VCTK/"))
|
||||
|
||||
|
||||
audio_config = BaseAudioConfig(
|
||||
sample_rate=22050,
|
||||
win_length=1024,
|
||||
hop_length=256,
|
||||
num_mels=80,
|
||||
preemphasis=0.0,
|
||||
ref_level_db=20,
|
||||
log_func="np.log",
|
||||
do_trim_silence=True,
|
||||
trim_db=23.0,
|
||||
mel_fmin=0,
|
||||
mel_fmax=None,
|
||||
spec_gain=1.0,
|
||||
signal_norm=False,
|
||||
do_amp_to_db_linear=False,
|
||||
resample=True,
|
||||
)
|
||||
|
||||
config = VitsConfig(
|
||||
audio=audio_config,
|
||||
run_name="vits_vctk",
|
||||
use_speaker_embedding=True,
|
||||
batch_size=32,
|
||||
eval_batch_size=16,
|
||||
batch_group_size=5,
|
||||
num_loader_workers=4,
|
||||
num_eval_loader_workers=4,
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
epochs=1000,
|
||||
text_cleaner="english_cleaners",
|
||||
use_phonemes=True,
|
||||
phoneme_language="en-us",
|
||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||
compute_input_seq_cache=True,
|
||||
print_step=25,
|
||||
print_eval=False,
|
||||
mixed_precision=True,
|
||||
sort_by_audio_len=True,
|
||||
min_seq_len=32 * 256 * 4,
|
||||
max_seq_len=1500000,
|
||||
output_path=output_path,
|
||||
datasets=[dataset_config],
|
||||
)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio.to_dict())
|
||||
|
||||
# load training samples
|
||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||
|
||||
# init speaker manager for multi-speaker training
|
||||
# it maps speaker-id to speaker-name in the model and data-loader
|
||||
speaker_manager = SpeakerManager()
|
||||
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
|
||||
config.model_args.num_speakers = speaker_manager.num_speakers
|
||||
|
||||
# init model
|
||||
model = Vits(config, speaker_manager)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
Loading…
Reference in New Issue