Remove the unusable fine-tuning model

pull/1032/head
Edresson 2021-11-22 08:19:36 -03:00 committed by Eren Gölge
parent 352aa69eca
commit 6fc3b9e679
2 changed files with 10 additions and 159 deletions

View File

@ -599,7 +599,6 @@ class VitsGeneratorLoss(nn.Module):
feats_disc_fake,
feats_disc_real,
loss_duration,
fine_tuning_mode=0,
use_speaker_encoder_as_loss=False,
gt_spk_emb=None,
syn_spk_emb=None,
@ -623,14 +622,9 @@ class VitsGeneratorLoss(nn.Module):
# compute mel spectrograms from the waveforms
mel = self.stft(waveform)
mel_hat = self.stft(waveform_hat)
# compute losses
# ignore tts model loss if fine tunning mode is on
if fine_tuning_mode:
loss_kl = 0.0
else:
loss_kl = self.kl_loss(z_p, logs_q, m_p, logs_p, z_mask.unsqueeze(1)) * self.kl_loss_alpha
loss_kl = self.kl_loss(z_p, logs_q, m_p, logs_p, z_mask.unsqueeze(1)) * self.kl_loss_alpha
loss_feat = self.feature_loss(feats_disc_fake, feats_disc_real) * self.feat_loss_alpha
loss_gen = self.generator_loss(scores_disc_fake)[0] * self.gen_loss_alpha
loss_mel = torch.nn.functional.l1_loss(mel, mel_hat) * self.mel_loss_alpha

View File

@ -167,11 +167,6 @@ class VitsArgs(Coqpit):
speaker_encoder_model_path (str):
Path to the file speaker encoder checkpoint file, to use for SCL. Defaults to "".
fine_tuning_mode (int):
Fine tuning only the vocoder part of the model, while the rest will be frozen. Defaults to 0.
Mode 0: Disabled;
Mode 1: uses the distribution predicted by the encoder and It's recommended for TTS;
Mode 2: uses the distribution predicted by the encoder and It's recommended for voice conversion.
"""
num_chars: int = 100
@ -219,7 +214,6 @@ class VitsArgs(Coqpit):
use_speaker_encoder_as_loss: bool = False
speaker_encoder_config_path: str = ""
speaker_encoder_model_path: str = ""
fine_tuning_mode: int = 0
freeze_encoder: bool = False
freeze_DP: bool = False
freeze_PE: bool = False
@ -672,122 +666,6 @@ class Vits(BaseTTS):
)
return outputs
def forward_fine_tuning(
self,
x: torch.tensor,
x_lengths: torch.tensor,
y: torch.tensor,
y_lengths: torch.tensor,
aux_input={"d_vectors": None, "speaker_ids": None, "language_ids": None},
waveform=None,
) -> Dict:
"""Forward pass of the model.
Args:
x (torch.tensor): Batch of input character sequence IDs.
x_lengths (torch.tensor): Batch of input character sequence lengths.
y (torch.tensor): Batch of input spectrograms.
y_lengths (torch.tensor): Batch of input spectrogram lengths.
aux_input (dict, optional): Auxiliary inputs for multi-speaker training. Defaults to {"d_vectors": None, "speaker_ids": None}.
Returns:
Dict: model outputs keyed by the output name.
Shapes:
- x: :math:`[B, T_seq]`
- x_lengths: :math:`[B]`
- y: :math:`[B, C, T_spec]`
- y_lengths: :math:`[B]`
- d_vectors: :math:`[B, C, 1]`
- speaker_ids: :math:`[B]`
"""
with torch.no_grad():
outputs = {}
sid, g, lid = self._set_cond_input(aux_input)
# speaker embedding
if self.args.use_speaker_embedding and sid is not None and not self.use_d_vector:
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
# language embedding
lang_emb = None
if self.args.use_language_embedding and lid is not None:
lang_emb = self.emb_l(lid).unsqueeze(-1)
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)
# posterior encoder
z, m_q, logs_q, y_mask = self.posterior_encoder(y, y_lengths, g=g)
# flow layers
z_p = self.flow(z, y_mask, g=g)
# find the alignment path
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
with torch.no_grad():
o_scale = torch.exp(-2 * logs_p)
logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1]).unsqueeze(-1) # [b, t, 1]
logp2 = torch.einsum("klm, kln -> kmn", [o_scale, -0.5 * (z_p ** 2)])
logp3 = torch.einsum("klm, kln -> kmn", [m_p * o_scale, z_p])
logp4 = torch.sum(-0.5 * (m_p ** 2) * o_scale, [1]).unsqueeze(-1) # [b, t, 1]
logp = logp2 + logp3 + logp1 + logp4
attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach()
# expand prior
m_p = torch.einsum("klmn, kjm -> kjn", [attn, m_p])
logs_p = torch.einsum("klmn, kjm -> kjn", [attn, logs_p])
# mode 1: like SC-GlowTTS paper; mode 2: recommended for voice conversion
if self.args.fine_tuning_mode == 1:
z_ft = m_p
elif self.args.fine_tuning_mode == 2:
z_ft = z_p
else:
raise RuntimeError(" [!] Invalid Fine Tunning Mode !")
# inverse decoder and get the output
z_f_pred = self.flow(z_ft, y_mask, g=g, reverse=True)
z_slice, slice_ids = rand_segments(z_f_pred, y_lengths, self.spec_segment_size)
o = self.waveform_decoder(z_slice, g=g)
wav_seg = segment(
waveform.transpose(1, 2),
slice_ids * self.config.audio.hop_length,
self.args.spec_segment_size * self.config.audio.hop_length,
)
if self.args.use_speaker_encoder_as_loss and self.speaker_encoder is not None:
# concate generated and GT waveforms
wavs_batch = torch.cat((wav_seg, o), dim=0).squeeze(1)
# resample audio to speaker encoder sample_rate
if self.audio_transform is not None:
wavs_batch = self.audio_transform(wavs_batch)
pred_embs = self.speaker_encoder.forward(wavs_batch, l2_norm=True)
# split generated and GT speaker embeddings
gt_spk_emb, syn_spk_emb = torch.chunk(pred_embs, 2, dim=0)
else:
gt_spk_emb, syn_spk_emb = None, None
outputs.update(
{
"model_outputs": o,
"alignments": attn.squeeze(1),
"loss_duration": 0.0,
"z": z,
"z_p": z_p,
"m_p": m_p,
"logs_p": logs_p,
"m_q": m_q,
"logs_q": logs_q,
"waveform_seg": wav_seg,
"gt_spk_emb": gt_spk_emb,
"syn_spk_emb": syn_spk_emb,
}
)
return outputs
def inference(self, x, aux_input={"d_vectors": None, "speaker_ids": None, "language_ids": None}):
"""
@ -869,15 +747,6 @@ class Vits(BaseTTS):
if optimizer_idx not in [0, 1]:
raise ValueError(" [!] Unexpected `optimizer_idx`.")
# generator pass
if self.args.fine_tuning_mode:
# ToDo: find better place fot it
# force eval mode
self.eval()
# restore train mode for the vocoder part
self.waveform_decoder.train()
self.disc.train()
if self.args.freeze_encoder:
for param in self.text_encoder.parameters():
param.requires_grad = False
@ -913,25 +782,14 @@ class Vits(BaseTTS):
waveform = batch["waveform"]
# generator pass
if self.args.fine_tuning_mode:
# model forward
outputs = self.forward_fine_tuning(
text_input,
text_lengths,
linear_input.transpose(1, 2),
mel_lengths,
aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids, "language_ids": language_ids},
waveform=waveform,
)
else:
outputs = self.forward(
text_input,
text_lengths,
linear_input.transpose(1, 2),
mel_lengths,
aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids, "language_ids": language_ids},
waveform=waveform,
)
outputs = self.forward(
text_input,
text_lengths,
linear_input.transpose(1, 2),
mel_lengths,
aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids, "language_ids": language_ids},
waveform=waveform,
)
# cache tensors for the discriminator
self.y_disc_cache = None
@ -958,7 +816,6 @@ class Vits(BaseTTS):
feats_disc_fake=outputs["feats_disc_fake"],
feats_disc_real=outputs["feats_disc_real"],
loss_duration=outputs["loss_duration"],
fine_tuning_mode=self.args.fine_tuning_mode,
use_speaker_encoder_as_loss=self.args.use_speaker_encoder_as_loss,
gt_spk_emb=outputs["gt_spk_emb"],
syn_spk_emb=outputs["syn_spk_emb"],