mirror of https://github.com/coqui-ai/TTS.git
Remove the unusable fine-tuning model
parent
352aa69eca
commit
6fc3b9e679
|
@ -599,7 +599,6 @@ class VitsGeneratorLoss(nn.Module):
|
|||
feats_disc_fake,
|
||||
feats_disc_real,
|
||||
loss_duration,
|
||||
fine_tuning_mode=0,
|
||||
use_speaker_encoder_as_loss=False,
|
||||
gt_spk_emb=None,
|
||||
syn_spk_emb=None,
|
||||
|
@ -623,14 +622,9 @@ class VitsGeneratorLoss(nn.Module):
|
|||
# compute mel spectrograms from the waveforms
|
||||
mel = self.stft(waveform)
|
||||
mel_hat = self.stft(waveform_hat)
|
||||
|
||||
# compute losses
|
||||
|
||||
# ignore tts model loss if fine tunning mode is on
|
||||
if fine_tuning_mode:
|
||||
loss_kl = 0.0
|
||||
else:
|
||||
loss_kl = self.kl_loss(z_p, logs_q, m_p, logs_p, z_mask.unsqueeze(1)) * self.kl_loss_alpha
|
||||
|
||||
loss_kl = self.kl_loss(z_p, logs_q, m_p, logs_p, z_mask.unsqueeze(1)) * self.kl_loss_alpha
|
||||
loss_feat = self.feature_loss(feats_disc_fake, feats_disc_real) * self.feat_loss_alpha
|
||||
loss_gen = self.generator_loss(scores_disc_fake)[0] * self.gen_loss_alpha
|
||||
loss_mel = torch.nn.functional.l1_loss(mel, mel_hat) * self.mel_loss_alpha
|
||||
|
|
|
@ -167,11 +167,6 @@ class VitsArgs(Coqpit):
|
|||
speaker_encoder_model_path (str):
|
||||
Path to the file speaker encoder checkpoint file, to use for SCL. Defaults to "".
|
||||
|
||||
fine_tuning_mode (int):
|
||||
Fine tuning only the vocoder part of the model, while the rest will be frozen. Defaults to 0.
|
||||
Mode 0: Disabled;
|
||||
Mode 1: uses the distribution predicted by the encoder and It's recommended for TTS;
|
||||
Mode 2: uses the distribution predicted by the encoder and It's recommended for voice conversion.
|
||||
"""
|
||||
|
||||
num_chars: int = 100
|
||||
|
@ -219,7 +214,6 @@ class VitsArgs(Coqpit):
|
|||
use_speaker_encoder_as_loss: bool = False
|
||||
speaker_encoder_config_path: str = ""
|
||||
speaker_encoder_model_path: str = ""
|
||||
fine_tuning_mode: int = 0
|
||||
freeze_encoder: bool = False
|
||||
freeze_DP: bool = False
|
||||
freeze_PE: bool = False
|
||||
|
@ -672,122 +666,6 @@ class Vits(BaseTTS):
|
|||
)
|
||||
return outputs
|
||||
|
||||
def forward_fine_tuning(
|
||||
self,
|
||||
x: torch.tensor,
|
||||
x_lengths: torch.tensor,
|
||||
y: torch.tensor,
|
||||
y_lengths: torch.tensor,
|
||||
aux_input={"d_vectors": None, "speaker_ids": None, "language_ids": None},
|
||||
waveform=None,
|
||||
) -> Dict:
|
||||
"""Forward pass of the model.
|
||||
|
||||
Args:
|
||||
x (torch.tensor): Batch of input character sequence IDs.
|
||||
x_lengths (torch.tensor): Batch of input character sequence lengths.
|
||||
y (torch.tensor): Batch of input spectrograms.
|
||||
y_lengths (torch.tensor): Batch of input spectrogram lengths.
|
||||
aux_input (dict, optional): Auxiliary inputs for multi-speaker training. Defaults to {"d_vectors": None, "speaker_ids": None}.
|
||||
|
||||
Returns:
|
||||
Dict: model outputs keyed by the output name.
|
||||
|
||||
Shapes:
|
||||
- x: :math:`[B, T_seq]`
|
||||
- x_lengths: :math:`[B]`
|
||||
- y: :math:`[B, C, T_spec]`
|
||||
- y_lengths: :math:`[B]`
|
||||
- d_vectors: :math:`[B, C, 1]`
|
||||
- speaker_ids: :math:`[B]`
|
||||
"""
|
||||
with torch.no_grad():
|
||||
outputs = {}
|
||||
sid, g, lid = self._set_cond_input(aux_input)
|
||||
# speaker embedding
|
||||
if self.args.use_speaker_embedding and sid is not None and not self.use_d_vector:
|
||||
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
||||
|
||||
# language embedding
|
||||
lang_emb = None
|
||||
if self.args.use_language_embedding and lid is not None:
|
||||
lang_emb = self.emb_l(lid).unsqueeze(-1)
|
||||
|
||||
x, m_p, logs_p, x_mask = self.text_encoder(x, x_lengths, lang_emb=lang_emb)
|
||||
|
||||
# posterior encoder
|
||||
z, m_q, logs_q, y_mask = self.posterior_encoder(y, y_lengths, g=g)
|
||||
|
||||
# flow layers
|
||||
z_p = self.flow(z, y_mask, g=g)
|
||||
|
||||
# find the alignment path
|
||||
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
|
||||
with torch.no_grad():
|
||||
o_scale = torch.exp(-2 * logs_p)
|
||||
logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1]).unsqueeze(-1) # [b, t, 1]
|
||||
logp2 = torch.einsum("klm, kln -> kmn", [o_scale, -0.5 * (z_p ** 2)])
|
||||
logp3 = torch.einsum("klm, kln -> kmn", [m_p * o_scale, z_p])
|
||||
logp4 = torch.sum(-0.5 * (m_p ** 2) * o_scale, [1]).unsqueeze(-1) # [b, t, 1]
|
||||
logp = logp2 + logp3 + logp1 + logp4
|
||||
attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
||||
|
||||
# expand prior
|
||||
m_p = torch.einsum("klmn, kjm -> kjn", [attn, m_p])
|
||||
logs_p = torch.einsum("klmn, kjm -> kjn", [attn, logs_p])
|
||||
|
||||
# mode 1: like SC-GlowTTS paper; mode 2: recommended for voice conversion
|
||||
if self.args.fine_tuning_mode == 1:
|
||||
z_ft = m_p
|
||||
elif self.args.fine_tuning_mode == 2:
|
||||
z_ft = z_p
|
||||
else:
|
||||
raise RuntimeError(" [!] Invalid Fine Tunning Mode !")
|
||||
|
||||
# inverse decoder and get the output
|
||||
z_f_pred = self.flow(z_ft, y_mask, g=g, reverse=True)
|
||||
z_slice, slice_ids = rand_segments(z_f_pred, y_lengths, self.spec_segment_size)
|
||||
|
||||
o = self.waveform_decoder(z_slice, g=g)
|
||||
|
||||
wav_seg = segment(
|
||||
waveform.transpose(1, 2),
|
||||
slice_ids * self.config.audio.hop_length,
|
||||
self.args.spec_segment_size * self.config.audio.hop_length,
|
||||
)
|
||||
|
||||
if self.args.use_speaker_encoder_as_loss and self.speaker_encoder is not None:
|
||||
# concate generated and GT waveforms
|
||||
wavs_batch = torch.cat((wav_seg, o), dim=0).squeeze(1)
|
||||
|
||||
# resample audio to speaker encoder sample_rate
|
||||
if self.audio_transform is not None:
|
||||
wavs_batch = self.audio_transform(wavs_batch)
|
||||
|
||||
pred_embs = self.speaker_encoder.forward(wavs_batch, l2_norm=True)
|
||||
|
||||
# split generated and GT speaker embeddings
|
||||
gt_spk_emb, syn_spk_emb = torch.chunk(pred_embs, 2, dim=0)
|
||||
else:
|
||||
gt_spk_emb, syn_spk_emb = None, None
|
||||
|
||||
outputs.update(
|
||||
{
|
||||
"model_outputs": o,
|
||||
"alignments": attn.squeeze(1),
|
||||
"loss_duration": 0.0,
|
||||
"z": z,
|
||||
"z_p": z_p,
|
||||
"m_p": m_p,
|
||||
"logs_p": logs_p,
|
||||
"m_q": m_q,
|
||||
"logs_q": logs_q,
|
||||
"waveform_seg": wav_seg,
|
||||
"gt_spk_emb": gt_spk_emb,
|
||||
"syn_spk_emb": syn_spk_emb,
|
||||
}
|
||||
)
|
||||
return outputs
|
||||
|
||||
def inference(self, x, aux_input={"d_vectors": None, "speaker_ids": None, "language_ids": None}):
|
||||
"""
|
||||
|
@ -869,15 +747,6 @@ class Vits(BaseTTS):
|
|||
if optimizer_idx not in [0, 1]:
|
||||
raise ValueError(" [!] Unexpected `optimizer_idx`.")
|
||||
|
||||
# generator pass
|
||||
if self.args.fine_tuning_mode:
|
||||
# ToDo: find better place fot it
|
||||
# force eval mode
|
||||
self.eval()
|
||||
# restore train mode for the vocoder part
|
||||
self.waveform_decoder.train()
|
||||
self.disc.train()
|
||||
|
||||
if self.args.freeze_encoder:
|
||||
for param in self.text_encoder.parameters():
|
||||
param.requires_grad = False
|
||||
|
@ -913,25 +782,14 @@ class Vits(BaseTTS):
|
|||
waveform = batch["waveform"]
|
||||
|
||||
# generator pass
|
||||
if self.args.fine_tuning_mode:
|
||||
# model forward
|
||||
outputs = self.forward_fine_tuning(
|
||||
text_input,
|
||||
text_lengths,
|
||||
linear_input.transpose(1, 2),
|
||||
mel_lengths,
|
||||
aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids, "language_ids": language_ids},
|
||||
waveform=waveform,
|
||||
)
|
||||
else:
|
||||
outputs = self.forward(
|
||||
text_input,
|
||||
text_lengths,
|
||||
linear_input.transpose(1, 2),
|
||||
mel_lengths,
|
||||
aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids, "language_ids": language_ids},
|
||||
waveform=waveform,
|
||||
)
|
||||
outputs = self.forward(
|
||||
text_input,
|
||||
text_lengths,
|
||||
linear_input.transpose(1, 2),
|
||||
mel_lengths,
|
||||
aux_input={"d_vectors": d_vectors, "speaker_ids": speaker_ids, "language_ids": language_ids},
|
||||
waveform=waveform,
|
||||
)
|
||||
|
||||
# cache tensors for the discriminator
|
||||
self.y_disc_cache = None
|
||||
|
@ -958,7 +816,6 @@ class Vits(BaseTTS):
|
|||
feats_disc_fake=outputs["feats_disc_fake"],
|
||||
feats_disc_real=outputs["feats_disc_real"],
|
||||
loss_duration=outputs["loss_duration"],
|
||||
fine_tuning_mode=self.args.fine_tuning_mode,
|
||||
use_speaker_encoder_as_loss=self.args.use_speaker_encoder_as_loss,
|
||||
gt_spk_emb=outputs["gt_spk_emb"],
|
||||
syn_spk_emb=outputs["syn_spk_emb"],
|
||||
|
|
Loading…
Reference in New Issue