mirror of https://github.com/coqui-ai/TTS.git
Constant queue size for autoregression window
parent
11b6080cfd
commit
6ea31e47df
|
@ -309,7 +309,7 @@ class Decoder(nn.Module):
|
|||
self.memory_size = memory_size if memory_size > 0 else r
|
||||
self.memory_dim = memory_dim
|
||||
# memory -> |Prenet| -> processed_memory
|
||||
self.prenet = Prenet(memory_dim * memory_dim * self.memory_size, out_features=[256, 128])
|
||||
self.prenet = Prenet(memory_dim * self.memory_size, out_features=[256, 128])
|
||||
# processed_inputs, processed_memory -> |Attention| -> Attention, attention, RNN_State
|
||||
self.attention_rnn = AttentionRNNCell(
|
||||
out_dim=128,
|
||||
|
|
|
@ -13,6 +13,7 @@ class Tacotron(nn.Module):
|
|||
mel_dim=80,
|
||||
r=5,
|
||||
padding_idx=None,
|
||||
memory_size=5,
|
||||
attn_windowing=False):
|
||||
super(Tacotron, self).__init__()
|
||||
self.r = r
|
||||
|
@ -23,7 +24,7 @@ class Tacotron(nn.Module):
|
|||
print(" | > Number of characters : {}".format(num_chars))
|
||||
self.embedding.weight.data.normal_(0, 0.3)
|
||||
self.encoder = Encoder(embedding_dim)
|
||||
self.decoder = Decoder(256, mel_dim, r, attn_windowing)
|
||||
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_windowing)
|
||||
self.postnet = PostCBHG(mel_dim)
|
||||
self.last_linear = nn.Sequential(
|
||||
nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim),
|
||||
|
|
2
train.py
2
train.py
|
@ -357,7 +357,7 @@ def evaluate(model, criterion, criterion_st, ap, current_step):
|
|||
|
||||
def main(args):
|
||||
num_chars = len(phonemes) if c.use_phonemes else len(symbols)
|
||||
model = Tacotron(num_chars, c.embedding_size, ap.num_freq, ap.num_mels, c.r)
|
||||
model = Tacotron(num_chars, c.embedding_size, ap.num_freq, ap.num_mels, c.r, c.memory_size)
|
||||
print(" | > Num output units : {}".format(ap.num_freq), flush=True)
|
||||
|
||||
optimizer = optim.Adam(model.parameters(), lr=c.lr, weight_decay=0)
|
||||
|
|
Loading…
Reference in New Issue