Add VitsConfig docstring

pull/718/head
Eren Gölge 2021-08-09 14:48:29 +00:00
parent 9f40172023
commit 6a7275881d
1 changed files with 78 additions and 2 deletions

View File

@ -9,6 +9,82 @@ from TTS.tts.models.vits import VitsArgs
class VitsConfig(BaseTTSConfig):
"""Defines parameters for VITS End2End TTS model.
Args:
model (str):
Model name. Do not change unless you know what you are doing.
model_args (VitsArgs):
Model architecture arguments. Defaults to `VitsArgs()`.
grad_clip (List):
Gradient clipping thresholds for each optimizer. Defaults to `[5.0, 5.0]`.
lr_gen (float):
Initial learning rate for the generator. Defaults to 0.0002.
lr_disc (float):
Initial learning rate for the discriminator. Defaults to 0.0002.
lr_scheduler_gen (str):
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to
`ExponentialLR`.
lr_scheduler_gen_params (dict):
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
lr_scheduler_disc (str):
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to
`ExponentialLR`.
lr_scheduler_disc_params (dict):
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
scheduler_after_epoch (bool):
If true, step the schedulers after each epoch else after each step. Defaults to `False`.
optimizer (str):
Name of the optimizer to use with both the generator and the discriminator networks. One of the
`torch.optim.*`. Defaults to `AdamW`.
kl_loss_alpha (float):
Loss weight for KL loss. Defaults to 1.0.
disc_loss_alpha (float):
Loss weight for the discriminator loss. Defaults to 1.0.
gen_loss_alpha (float):
Loss weight for the generator loss. Defaults to 1.0.
feat_loss_alpha (float):
Loss weight for the feature matching loss. Defaults to 1.0.
mel_loss_alpha (float):
Loss weight for the mel loss. Defaults to 45.0.
return_wav (bool):
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
compute_linear_spec (bool):
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
min_seq_len (int):
Minimum text length to be considered for training. Defaults to `13`.
max_seq_len (int):
Maximum text length to be considered for training. Defaults to `500`.
r (int):
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
add_blank (bool):
If true, a blank token is added in between every character. Defaults to `True`.
test_sentences (List[str]):
List of sentences to be used for testing.
Note:
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters.
Example:
>>> from TTS.tts.configs import VitsConfig
@ -20,7 +96,7 @@ class VitsConfig(BaseTTSConfig):
model_args: VitsArgs = field(default_factory=VitsArgs)
# optimizer
grad_clip: float = field(default_factory=lambda: [5, 5])
grad_clip: List[float] = field(default_factory=lambda: [5, 5])
lr_gen: float = 0.0002
lr_disc: float = 0.0002
lr_scheduler_gen: str = "ExponentialLR"
@ -44,7 +120,7 @@ class VitsConfig(BaseTTSConfig):
# overrides
min_seq_len: int = 13
max_seq_len: int = 200
max_seq_len: int = 500
r: int = 1 # DO NOT CHANGE
add_blank: bool = True