mirror of https://github.com/coqui-ai/TTS.git
Add recipe for multi-lingual VITS
parent
a564eb9f54
commit
6700bb1bcf
|
@ -0,0 +1,117 @@
|
|||
import os
|
||||
from glob import glob
|
||||
|
||||
from TTS.config.shared_configs import BaseAudioConfig
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
||||
from TTS.tts.configs.vits_config import VitsConfig
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.models.vits import Vits, VitsArgs
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.tts.utils.languages import LanguageManager
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
mailabs_path = '/home/julian/workspace/mailabs/**'
|
||||
dataset_paths = glob(mailabs_path)
|
||||
dataset_config = [BaseDatasetConfig(name="mailabs", meta_file_train=None, path=path, language=path.split('/')[-1]) for path in dataset_paths]
|
||||
|
||||
audio_config = BaseAudioConfig(
|
||||
sample_rate=16000,
|
||||
win_length=1024,
|
||||
hop_length=256,
|
||||
num_mels=80,
|
||||
preemphasis=0.0,
|
||||
ref_level_db=20,
|
||||
log_func="np.log",
|
||||
do_trim_silence=False,
|
||||
trim_db=23.0,
|
||||
mel_fmin=0,
|
||||
mel_fmax=None,
|
||||
spec_gain=1.0,
|
||||
signal_norm=True,
|
||||
do_amp_to_db_linear=False,
|
||||
resample=False,
|
||||
)
|
||||
|
||||
vitsArgs = VitsArgs(
|
||||
use_language_embedding=True,
|
||||
embedded_language_dim=4,
|
||||
use_speaker_embedding=True,
|
||||
use_sdp=False,
|
||||
)
|
||||
|
||||
config = VitsConfig(
|
||||
model_args=vitsArgs,
|
||||
audio=audio_config,
|
||||
run_name="vits_vctk",
|
||||
use_speaker_embedding=True,
|
||||
batch_size=32,
|
||||
eval_batch_size=16,
|
||||
batch_group_size=0,
|
||||
num_loader_workers=4,
|
||||
num_eval_loader_workers=4,
|
||||
run_eval=True,
|
||||
test_delay_epochs=-1,
|
||||
epochs=1000,
|
||||
text_cleaner="multilingual_cleaners",
|
||||
use_phonemes=False,
|
||||
phoneme_language="en-us",
|
||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||
compute_input_seq_cache=True,
|
||||
print_step=25,
|
||||
use_language_weighted_sampler= True,
|
||||
print_eval=False,
|
||||
mixed_precision=False,
|
||||
sort_by_audio_len=True,
|
||||
min_seq_len=32 * 256 * 4,
|
||||
max_seq_len=160000,
|
||||
output_path=output_path,
|
||||
datasets=dataset_config,
|
||||
characters= {
|
||||
"pad": "_",
|
||||
"eos": "&",
|
||||
"bos": "*",
|
||||
"characters": "!¡'(),-.:;¿?abcdefghijklmnopqrstuvwxyzµßàáâäåæçèéêëìíîïñòóôöùúûüąćęłńœśşźżƒабвгдежзийклмнопрстуфхцчшщъыьэюяёєіїґӧ «°±µ»$%&‘’‚“`”„",
|
||||
"punctuations": "!¡'(),-.:;¿? ",
|
||||
"phonemes": None,
|
||||
"unique": True
|
||||
},
|
||||
test_sentences=[
|
||||
["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.", 'mary_ann', None, 'en_US'],
|
||||
["Il m'a fallu beaucoup de temps pour d\u00e9velopper une voix, et maintenant que je l'ai, je ne vais pas me taire.", "ezwa", None, 'fr_FR'],
|
||||
["Ich finde, dieses Startup ist wirklich unglaublich.", "eva_k", None, 'de_DE'],
|
||||
["Я думаю, что этот стартап действительно удивительный.", "oblomov", None, 'ru_RU'],
|
||||
]
|
||||
)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio.to_dict())
|
||||
|
||||
# load training samples
|
||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||
|
||||
# init speaker manager for multi-speaker training
|
||||
# it maps speaker-id to speaker-name in the model and data-loader
|
||||
speaker_manager = SpeakerManager()
|
||||
speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
|
||||
config.model_args.num_speakers = speaker_manager.num_speakers
|
||||
|
||||
language_manager = LanguageManager(config=config)
|
||||
config.model_args.num_languages = language_manager.num_languages
|
||||
|
||||
# init model
|
||||
model = Vits(config, speaker_manager, language_manager)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
Loading…
Reference in New Issue