mirror of https://github.com/coqui-ai/TTS.git
refactor train_speedy_speech.py for coqpit
parent
4a58fdfd59
commit
65d7ad4250
|
@ -25,7 +25,7 @@ from TTS.tts.utils.speakers import parse_speakers
|
|||
from TTS.tts.utils.synthesis import synthesis
|
||||
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
||||
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
|
||||
from TTS.utils.arguments import parse_arguments, process_args
|
||||
from TTS.utils.arguments import init_training
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
from TTS.utils.distribute import init_distributed, reduce_tensor
|
||||
from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict
|
||||
|
@ -36,45 +36,45 @@ use_cuda, num_gpus = setup_torch_training_env(True, False)
|
|||
|
||||
|
||||
def setup_loader(ap, r, is_val=False, verbose=False):
|
||||
if is_val and not c.run_eval:
|
||||
if is_val and not config.run_eval:
|
||||
loader = None
|
||||
else:
|
||||
dataset = MyDataset(
|
||||
r,
|
||||
c.text_cleaner,
|
||||
config.text_cleaner,
|
||||
compute_linear_spec=False,
|
||||
meta_data=meta_data_eval if is_val else meta_data_train,
|
||||
ap=ap,
|
||||
tp=c.characters if "characters" in c.keys() else None,
|
||||
add_blank=c["add_blank"] if "add_blank" in c.keys() else False,
|
||||
batch_group_size=0 if is_val else c.batch_group_size * c.batch_size,
|
||||
min_seq_len=c.min_seq_len,
|
||||
max_seq_len=c.max_seq_len,
|
||||
phoneme_cache_path=c.phoneme_cache_path,
|
||||
use_phonemes=c.use_phonemes,
|
||||
phoneme_language=c.phoneme_language,
|
||||
enable_eos_bos=c.enable_eos_bos_chars,
|
||||
tp=config.characters,
|
||||
add_blank=config["add_blank"],
|
||||
batch_group_size=0 if is_val else config.batch_group_size * config.batch_size,
|
||||
min_seq_len=config.min_seq_len,
|
||||
max_seq_len=config.max_seq_len,
|
||||
phoneme_cache_path=config.phoneme_cache_path,
|
||||
use_phonemes=config.use_phonemes,
|
||||
phoneme_language=config.phoneme_language,
|
||||
enable_eos_bos=config.enable_eos_bos_chars,
|
||||
use_noise_augment=not is_val,
|
||||
verbose=verbose,
|
||||
speaker_mapping=speaker_mapping
|
||||
if c.use_speaker_embedding and c.use_external_speaker_embedding_file
|
||||
if config.use_speaker_embedding and config.use_external_speaker_embedding_file
|
||||
else None,
|
||||
)
|
||||
|
||||
if c.use_phonemes and c.compute_input_seq_cache:
|
||||
if config.use_phonemes and config.compute_input_seq_cache:
|
||||
# precompute phonemes to have a better estimate of sequence lengths.
|
||||
dataset.compute_input_seq(c.num_loader_workers)
|
||||
dataset.compute_input_seq(config.num_loader_workers)
|
||||
dataset.sort_items()
|
||||
|
||||
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
|
||||
loader = DataLoader(
|
||||
dataset,
|
||||
batch_size=c.eval_batch_size if is_val else c.batch_size,
|
||||
batch_size=config.eval_batch_size if is_val else config.batch_size,
|
||||
shuffle=False,
|
||||
collate_fn=dataset.collate_fn,
|
||||
drop_last=False,
|
||||
sampler=sampler,
|
||||
num_workers=c.num_val_loader_workers if is_val else c.num_loader_workers,
|
||||
num_workers=config.num_val_loader_workers if is_val else config.num_loader_workers,
|
||||
pin_memory=False,
|
||||
)
|
||||
return loader
|
||||
|
@ -92,8 +92,8 @@ def format_data(data):
|
|||
avg_text_length = torch.mean(text_lengths.float())
|
||||
avg_spec_length = torch.mean(mel_lengths.float())
|
||||
|
||||
if c.use_speaker_embedding:
|
||||
if c.use_external_speaker_embedding_file:
|
||||
if config.use_speaker_embedding:
|
||||
if config.use_external_speaker_embedding_file:
|
||||
# return precomputed embedding vector
|
||||
speaker_c = data[8]
|
||||
else:
|
||||
|
@ -150,12 +150,12 @@ def train(data_loader, model, criterion, optimizer, scheduler, ap, global_step,
|
|||
epoch_time = 0
|
||||
keep_avg = KeepAverage()
|
||||
if use_cuda:
|
||||
batch_n_iter = int(len(data_loader.dataset) / (c.batch_size * num_gpus))
|
||||
batch_n_iter = int(len(data_loader.dataset) / (config.batch_size * num_gpus))
|
||||
else:
|
||||
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
|
||||
batch_n_iter = int(len(data_loader.dataset) / config.batch_size)
|
||||
end_time = time.time()
|
||||
c_logger.print_train_start()
|
||||
scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
|
||||
scaler = torch.cuda.amp.GradScaler() if config.mixed_precision else None
|
||||
for num_iter, data in enumerate(data_loader):
|
||||
start_time = time.time()
|
||||
|
||||
|
@ -179,7 +179,7 @@ def train(data_loader, model, criterion, optimizer, scheduler, ap, global_step,
|
|||
optimizer.zero_grad()
|
||||
|
||||
# forward pass model
|
||||
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
|
||||
with torch.cuda.amp.autocast(enabled=config.mixed_precision):
|
||||
decoder_output, dur_output, alignments = model.forward(
|
||||
text_input, text_lengths, mel_lengths, dur_target, g=speaker_c
|
||||
)
|
||||
|
@ -190,19 +190,19 @@ def train(data_loader, model, criterion, optimizer, scheduler, ap, global_step,
|
|||
)
|
||||
|
||||
# backward pass with loss scaling
|
||||
if c.mixed_precision:
|
||||
if config.mixed_precision:
|
||||
scaler.scale(loss_dict["loss"]).backward()
|
||||
scaler.unscale_(optimizer)
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), c.grad_clip)
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
else:
|
||||
loss_dict["loss"].backward()
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), c.grad_clip)
|
||||
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
|
||||
optimizer.step()
|
||||
|
||||
# setup lr
|
||||
if c.noam_schedule:
|
||||
if config.noam_schedule:
|
||||
scheduler.step()
|
||||
|
||||
# current_lr
|
||||
|
@ -240,7 +240,7 @@ def train(data_loader, model, criterion, optimizer, scheduler, ap, global_step,
|
|||
keep_avg.update_values(update_train_values)
|
||||
|
||||
# print training progress
|
||||
if global_step % c.print_step == 0:
|
||||
if global_step % config.print_step == 0:
|
||||
log_dict = {
|
||||
"avg_spec_length": [avg_spec_length, 1], # value, precision
|
||||
"avg_text_length": [avg_text_length, 1],
|
||||
|
@ -253,13 +253,13 @@ def train(data_loader, model, criterion, optimizer, scheduler, ap, global_step,
|
|||
if args.rank == 0:
|
||||
# Plot Training Iter Stats
|
||||
# reduce TB load
|
||||
if global_step % c.tb_plot_step == 0:
|
||||
if global_step % config.tb_plot_step == 0:
|
||||
iter_stats = {"lr": current_lr, "grad_norm": grad_norm, "step_time": step_time}
|
||||
iter_stats.update(loss_dict)
|
||||
tb_logger.tb_train_iter_stats(global_step, iter_stats)
|
||||
|
||||
if global_step % c.save_step == 0:
|
||||
if c.checkpoint:
|
||||
if global_step % config.save_step == 0:
|
||||
if config.checkpoint:
|
||||
# save model
|
||||
save_checkpoint(
|
||||
model,
|
||||
|
@ -291,7 +291,7 @@ def train(data_loader, model, criterion, optimizer, scheduler, ap, global_step,
|
|||
|
||||
# Sample audio
|
||||
train_audio = ap.inv_melspectrogram(pred_spec.T)
|
||||
tb_logger.tb_train_audios(global_step, {"TrainAudio": train_audio}, c.audio["sample_rate"])
|
||||
tb_logger.tb_train_audios(global_step, {"TrainAudio": train_audio}, config.audio["sample_rate"])
|
||||
end_time = time.time()
|
||||
|
||||
# print epoch stats
|
||||
|
@ -302,7 +302,7 @@ def train(data_loader, model, criterion, optimizer, scheduler, ap, global_step,
|
|||
epoch_stats = {"epoch_time": epoch_time}
|
||||
epoch_stats.update(keep_avg.avg_values)
|
||||
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
|
||||
if c.tb_model_param_stats:
|
||||
if config.tb_model_param_stats:
|
||||
tb_logger.tb_model_weights(model, global_step)
|
||||
return keep_avg.avg_values, global_step
|
||||
|
||||
|
@ -321,7 +321,7 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
text_input, text_lengths, mel_targets, mel_lengths, speaker_c, _, _, _, dur_target, _ = format_data(data)
|
||||
|
||||
# forward pass model
|
||||
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
|
||||
with torch.cuda.amp.autocast(enabled=config.mixed_precision):
|
||||
decoder_output, dur_output, alignments = model.forward(
|
||||
text_input, text_lengths, mel_lengths, dur_target, g=speaker_c
|
||||
)
|
||||
|
@ -361,7 +361,7 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
update_train_values["avg_" + key] = value
|
||||
keep_avg.update_values(update_train_values)
|
||||
|
||||
if c.print_eval:
|
||||
if config.print_eval:
|
||||
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
|
||||
|
||||
if args.rank == 0:
|
||||
|
@ -379,14 +379,17 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
|
||||
# Sample audio
|
||||
eval_audio = ap.inv_melspectrogram(pred_spec.T)
|
||||
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio}, c.audio["sample_rate"])
|
||||
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio}, config.audio["sample_rate"])
|
||||
|
||||
# Plot Validation Stats
|
||||
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
|
||||
tb_logger.tb_eval_figures(global_step, eval_figures)
|
||||
|
||||
if args.rank == 0 and epoch >= c.test_delay_epochs:
|
||||
if c.test_sentences_file is None:
|
||||
if args.rank == 0 and epoch >= config.test_delay_epochs:
|
||||
if config.test_sentences_file:
|
||||
with open(config.test_sentences_file, "r") as f:
|
||||
test_sentences = [s.strip() for s in f.readlines()]
|
||||
else:
|
||||
test_sentences = [
|
||||
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
|
||||
"Be a voice, not an echo.",
|
||||
|
@ -394,16 +397,14 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
"This cake is great. It's so delicious and moist.",
|
||||
"Prior to November 22, 1963.",
|
||||
]
|
||||
else:
|
||||
with open(c.test_sentences_file, "r") as f:
|
||||
test_sentences = [s.strip() for s in f.readlines()]
|
||||
|
||||
|
||||
# test sentences
|
||||
test_audios = {}
|
||||
test_figures = {}
|
||||
print(" | > Synthesizing test sentences")
|
||||
if c.use_speaker_embedding:
|
||||
if c.use_external_speaker_embedding_file:
|
||||
if config.use_speaker_embedding:
|
||||
if config.use_external_speaker_embedding_file:
|
||||
speaker_embedding = speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping) - 1)]][
|
||||
"embedding"
|
||||
]
|
||||
|
@ -415,20 +416,19 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
speaker_id = None
|
||||
speaker_embedding = None
|
||||
|
||||
style_wav = c.get("style_wav_for_test")
|
||||
for idx, test_sentence in enumerate(test_sentences):
|
||||
try:
|
||||
wav, alignment, _, postnet_output, _, _ = synthesis(
|
||||
model,
|
||||
test_sentence,
|
||||
c,
|
||||
config,
|
||||
use_cuda,
|
||||
ap,
|
||||
speaker_id=speaker_id,
|
||||
speaker_embedding=speaker_embedding,
|
||||
style_wav=style_wav,
|
||||
style_wav=None,
|
||||
truncated=False,
|
||||
enable_eos_bos_chars=c.enable_eos_bos_chars, # pylint: disable=unused-argument
|
||||
enable_eos_bos_chars=config.enable_eos_bos_chars, # pylint: disable=unused-argument
|
||||
use_griffin_lim=True,
|
||||
do_trim_silence=False,
|
||||
)
|
||||
|
@ -443,7 +443,7 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
except: # pylint: disable=bare-except
|
||||
print(" !! Error creating Test Sentence -", idx)
|
||||
traceback.print_exc()
|
||||
tb_logger.tb_test_audios(global_step, test_audios, c.audio["sample_rate"])
|
||||
tb_logger.tb_test_audios(global_step, test_audios, config.audio["sample_rate"])
|
||||
tb_logger.tb_test_figures(global_step, test_figures)
|
||||
return keep_avg.avg_values
|
||||
|
||||
|
@ -453,34 +453,34 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
# pylint: disable=global-variable-undefined
|
||||
global meta_data_train, meta_data_eval, symbols, phonemes, model_characters, speaker_mapping
|
||||
# Audio processor
|
||||
ap = AudioProcessor(**c.audio)
|
||||
if "characters" in c.keys():
|
||||
symbols, phonemes = make_symbols(**c.characters)
|
||||
ap = AudioProcessor(**config.audio.to_dict())
|
||||
if config.characters is not None:
|
||||
symbols, phonemes = make_symbols(**config.characters.to_dict())
|
||||
|
||||
# DISTRUBUTED
|
||||
if num_gpus > 1:
|
||||
init_distributed(args.rank, num_gpus, args.group_id, c.distributed["backend"], c.distributed["url"])
|
||||
init_distributed(args.rank, num_gpus, args.group_id, config.distributed["backend"], config.distributed["url"])
|
||||
|
||||
# set model characters
|
||||
model_characters = phonemes if c.use_phonemes else symbols
|
||||
model_characters = phonemes if config.use_phonemes else symbols
|
||||
num_chars = len(model_characters)
|
||||
|
||||
# load data instances
|
||||
meta_data_train, meta_data_eval = load_meta_data(c.datasets, eval_split=True)
|
||||
meta_data_train, meta_data_eval = load_meta_data(config.datasets, eval_split=True)
|
||||
|
||||
# set the portion of the data used for training if set in config.json
|
||||
if "train_portion" in c.keys():
|
||||
meta_data_train = meta_data_train[: int(len(meta_data_train) * c.train_portion)]
|
||||
if "eval_portion" in c.keys():
|
||||
meta_data_eval = meta_data_eval[: int(len(meta_data_eval) * c.eval_portion)]
|
||||
if config.has("train_portion"):
|
||||
meta_data_train = meta_data_train[: int(len(meta_data_train) * config.train_portion)]
|
||||
if config.has("eval_portion"):
|
||||
meta_data_eval = meta_data_eval[: int(len(meta_data_eval) * config.eval_portion)]
|
||||
|
||||
# parse speakers
|
||||
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, OUT_PATH)
|
||||
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(config, args, meta_data_train, OUT_PATH)
|
||||
|
||||
# setup model
|
||||
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim=speaker_embedding_dim)
|
||||
optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0, betas=(0.9, 0.98), eps=1e-9)
|
||||
criterion = SpeedySpeechLoss(c)
|
||||
model = setup_model(num_chars, num_speakers, config, speaker_embedding_dim=speaker_embedding_dim)
|
||||
optimizer = RAdam(model.parameters(), lr=config.lr, weight_decay=0, betas=(0.9, 0.98), eps=1e-9)
|
||||
criterion = SpeedySpeechLoss(config)
|
||||
|
||||
if args.restore_path:
|
||||
print(f" > Restoring from {os.path.basename(args.restore_path)} ...")
|
||||
|
@ -489,18 +489,18 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
# TODO: fix optimizer init, model.cuda() needs to be called before
|
||||
# optimizer restore
|
||||
optimizer.load_state_dict(checkpoint["optimizer"])
|
||||
if c.reinit_layers:
|
||||
if config.reinit_layers:
|
||||
raise RuntimeError
|
||||
model.load_state_dict(checkpoint["model"])
|
||||
except: # pylint: disable=bare-except
|
||||
print(" > Partial model initialization.")
|
||||
model_dict = model.state_dict()
|
||||
model_dict = set_init_dict(model_dict, checkpoint["model"], c)
|
||||
model_dict = set_init_dict(model_dict, checkpoint["model"], config)
|
||||
model.load_state_dict(model_dict)
|
||||
del model_dict
|
||||
|
||||
for group in optimizer.param_groups:
|
||||
group["initial_lr"] = c.lr
|
||||
group["initial_lr"] = config.lr
|
||||
print(" > Model restored from step %d" % checkpoint["step"], flush=True)
|
||||
args.restore_step = checkpoint["step"]
|
||||
else:
|
||||
|
@ -514,8 +514,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
if num_gpus > 1:
|
||||
model = DDP_th(model, device_ids=[args.rank])
|
||||
|
||||
if c.noam_schedule:
|
||||
scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
|
||||
if config.noam_schedule:
|
||||
scheduler = NoamLR(optimizer, warmup_steps=config.warmup_steps, last_epoch=args.restore_step - 1)
|
||||
else:
|
||||
scheduler = None
|
||||
|
||||
|
@ -529,23 +529,23 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
print(" > Restoring best loss from " f"{os.path.basename(args.best_path)} ...")
|
||||
best_loss = torch.load(args.best_path, map_location="cpu")["model_loss"]
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_all_best = c.get("keep_all_best", False)
|
||||
keep_after = c.get("keep_after", 10000) # void if keep_all_best False
|
||||
keep_all_best = config.keep_all_best
|
||||
keep_after = config.keep_after # void if keep_all_best False
|
||||
|
||||
# define dataloaders
|
||||
train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
|
||||
eval_loader = setup_loader(ap, 1, is_val=True, verbose=True)
|
||||
|
||||
global_step = args.restore_step
|
||||
for epoch in range(0, c.epochs):
|
||||
c_logger.print_epoch_start(epoch, c.epochs)
|
||||
for epoch in range(0, config.epochs):
|
||||
c_logger.print_epoch_start(epoch, config.epochs)
|
||||
train_avg_loss_dict, global_step = train(
|
||||
train_loader, model, criterion, optimizer, scheduler, ap, global_step, epoch
|
||||
)
|
||||
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap, global_step, epoch)
|
||||
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
|
||||
target_loss = train_avg_loss_dict["avg_loss"]
|
||||
if c.run_eval:
|
||||
if config.run_eval:
|
||||
target_loss = eval_avg_loss_dict["avg_loss"]
|
||||
best_loss = save_best_model(
|
||||
target_loss,
|
||||
|
@ -554,7 +554,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
optimizer,
|
||||
global_step,
|
||||
epoch,
|
||||
c.r,
|
||||
config.r,
|
||||
OUT_PATH,
|
||||
model_characters,
|
||||
keep_all_best=keep_all_best,
|
||||
|
@ -563,8 +563,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_arguments(sys.argv)
|
||||
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(args, model_class="tts")
|
||||
args, config, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = init_training(sys.argv)
|
||||
|
||||
try:
|
||||
main(args)
|
||||
|
|
Loading…
Reference in New Issue