Add `PitchExtractor` and return dict by `collate`

pull/792/head
Eren Gölge 2021-09-03 13:25:57 +00:00
parent debf772ec5
commit 648655fa03
3 changed files with 138 additions and 126 deletions

View File

@ -130,6 +130,8 @@ class TTSDataset(Dataset):
if use_phonemes and not os.path.isdir(phoneme_cache_path):
os.makedirs(phoneme_cache_path, exist_ok=True)
if compute_f0:
self.pitch_extractor = PitchExtractor(self.items, verbose=verbose)
if self.verbose:
print("\n > DataLoader initialization")
print(" | > Use phonemes: {}".format(self.use_phonemes))
@ -247,8 +249,8 @@ class TTSDataset(Dataset):
pitch = None
if self.compute_f0:
pitch = self._load_or_compute_pitch(self.ap, wav_file, self.f0_cache_path)
pitch = self.normalize_pitch(pitch)
pitch = self.pitch_extractor._load_or_compute_pitch(self.ap, wav_file, self.f0_cache_path)
pitch = self.pitch_extractor.normalize_pitch(pitch)
sample = {
"raw_text": raw_text,
@ -317,96 +319,6 @@ class TTSDataset(Dataset):
for idx, p in enumerate(phonemes):
self.items[idx][0] = p
################
# Pitch Methods
###############
# TODO: Refactor Pitch methods into a separate class
@staticmethod
def create_pitch_file_path(wav_file, cache_path):
file_name = os.path.splitext(os.path.basename(wav_file))[0]
pitch_file = os.path.join(cache_path, file_name + "_pitch.npy")
return pitch_file
@staticmethod
def _compute_and_save_pitch(ap, wav_file, pitch_file=None):
wav = ap.load_wav(wav_file)
pitch = ap.compute_f0(wav)
if pitch_file:
np.save(pitch_file, pitch)
return pitch
@staticmethod
def compute_pitch_stats(pitch_vecs):
nonzeros = np.concatenate([v[np.where(v != 0.0)[0]] for v in pitch_vecs])
mean, std = np.mean(nonzeros), np.std(nonzeros)
return mean, std
def normalize_pitch(self, pitch):
zero_idxs = np.where(pitch == 0.0)[0]
pitch -= self.mean
pitch /= self.std
pitch[zero_idxs] = 0.0
return pitch
@staticmethod
def _load_or_compute_pitch(ap, wav_file, cache_path):
"""
compute pitch and return a numpy array of pitch values
"""
pitch_file = TTSDataset.create_pitch_file_path(wav_file, cache_path)
if not os.path.exists(pitch_file):
pitch = TTSDataset._compute_and_save_pitch(ap, wav_file, pitch_file)
else:
pitch = np.load(pitch_file)
return pitch
@staticmethod
def _pitch_worker(args):
item = args[0]
ap = args[1]
cache_path = args[2]
_, wav_file, *_ = item
pitch_file = TTSDataset.create_pitch_file_path(wav_file, cache_path)
if not os.path.exists(pitch_file):
pitch = TTSDataset._compute_and_save_pitch(ap, wav_file, pitch_file)
return pitch
return None
def compute_pitch(self, cache_path, num_workers=0):
"""Compute the input sequences with multi-processing.
Call it before passing dataset to the data loader to cache the input sequences for faster data loading."""
if not os.path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
if self.verbose:
print(" | > Computing pitch features ...")
if num_workers == 0:
pitch_vecs = []
for _, item in enumerate(tqdm.tqdm(self.items)):
pitch_vecs += [self._pitch_worker([item, self.ap, cache_path])]
else:
with Pool(num_workers) as p:
pitch_vecs = list(
tqdm.tqdm(
p.imap(TTSDataset._pitch_worker, [[item, self.ap, cache_path] for item in self.items]),
total=len(self.items),
)
)
pitch_mean, pitch_std = self.compute_pitch_stats(pitch_vecs)
pitch_stats = {"mean": pitch_mean, "std": pitch_std}
np.save(os.path.join(cache_path, "pitch_stats"), pitch_stats, allow_pickle=True)
def load_pitch_stats(self, cache_path):
stats_path = os.path.join(cache_path, "pitch_stats.npy")
stats = np.load(stats_path, allow_pickle=True).item()
self.mean = stats["mean"]
self.std = stats["std"]
###################
# End Pitch Methods
###################
def sort_and_filter_items(self, by_audio_len=False):
r"""Sort `items` based on text length or audio length in ascending order. Filter out samples out or the length
range.
@ -588,22 +500,22 @@ class TTSDataset(Dataset):
else:
attns = None
# TODO: return dictionary
return (
text,
text_lenghts,
speaker_names,
linear,
mel,
mel_lengths,
stop_targets,
item_idxs,
d_vectors,
speaker_ids,
attns,
wav_padded,
raw_text,
pitch,
)
return {
"text": text,
"text_lengths": text_lenghts,
"speaker_names": speaker_names,
"linear": linear,
"mel": mel,
"mel_lengths": mel_lengths,
"stop_targets": stop_targets,
"item_idxs": item_idxs,
"d_vectors": d_vectors,
"speaker_ids": speaker_ids,
"attns": attns,
"waveform": wav_padded,
"raw_text": raw_text,
"pitch": pitch,
}
raise TypeError(
(
@ -613,3 +525,103 @@ class TTSDataset(Dataset):
)
)
)
class PitchExtractor:
"""Pitch Extractor for computing F0 from wav files.
Args:
items (List[List]): Dataset samples.
verbose (bool): Whether to print the progress.
"""
def __init__(
self,
items: List[List],
verbose=False,
):
self.items = items
self.verbose = verbose
self.mean = None
self.std = None
@staticmethod
def create_pitch_file_path(wav_file, cache_path):
file_name = os.path.splitext(os.path.basename(wav_file))[0]
pitch_file = os.path.join(cache_path, file_name + "_pitch.npy")
return pitch_file
@staticmethod
def _compute_and_save_pitch(ap, wav_file, pitch_file=None):
wav = ap.load_wav(wav_file)
pitch = ap.compute_f0(wav)
if pitch_file:
np.save(pitch_file, pitch)
return pitch
@staticmethod
def compute_pitch_stats(pitch_vecs):
nonzeros = np.concatenate([v[np.where(v != 0.0)[0]] for v in pitch_vecs])
mean, std = np.mean(nonzeros), np.std(nonzeros)
return mean, std
def normalize_pitch(self, pitch):
zero_idxs = np.where(pitch == 0.0)[0]
pitch -= self.mean
pitch /= self.std
pitch[zero_idxs] = 0.0
return pitch
@staticmethod
def _load_or_compute_pitch(ap, wav_file, cache_path):
"""
compute pitch and return a numpy array of pitch values
"""
pitch_file = PitchExtractor.create_pitch_file_path(wav_file, cache_path)
if not os.path.exists(pitch_file):
pitch = PitchExtractor._compute_and_save_pitch(ap, wav_file, pitch_file)
else:
pitch = np.load(pitch_file)
return pitch
@staticmethod
def _pitch_worker(args):
item = args[0]
ap = args[1]
cache_path = args[2]
_, wav_file, *_ = item
pitch_file = PitchExtractor.create_pitch_file_path(wav_file, cache_path)
if not os.path.exists(pitch_file):
pitch = PitchExtractor._compute_and_save_pitch(ap, wav_file, pitch_file)
return pitch
return None
def compute_pitch(self, cache_path, num_workers=0):
"""Compute the input sequences with multi-processing.
Call it before passing dataset to the data loader to cache the input sequences for faster data loading."""
if not os.path.exists(cache_path):
os.makedirs(cache_path, exist_ok=True)
if self.verbose:
print(" | > Computing pitch features ...")
if num_workers == 0:
pitch_vecs = []
for _, item in enumerate(tqdm.tqdm(self.items)):
pitch_vecs += [self._pitch_worker([item, self.ap, cache_path])]
else:
with Pool(num_workers) as p:
pitch_vecs = list(
tqdm.tqdm(
p.imap(PitchExtractor._pitch_worker, [[item, self.ap, cache_path] for item in self.items]),
total=len(self.items),
)
)
pitch_mean, pitch_std = self.compute_pitch_stats(pitch_vecs)
pitch_stats = {"mean": pitch_mean, "std": pitch_std}
np.save(os.path.join(cache_path, "pitch_stats"), pitch_stats, allow_pickle=True)
def load_pitch_stats(self, cache_path):
stats_path = os.path.join(cache_path, "pitch_stats.npy")
stats = np.load(stats_path, allow_pickle=True).item()
self.mean = stats["mean"]
self.std = stats["std"]

View File

@ -104,19 +104,19 @@ class BaseTTS(BaseModel):
Dict: [description]
"""
# setup input batch
text_input = batch[0]
text_lengths = batch[1]
speaker_names = batch[2]
linear_input = batch[3]
mel_input = batch[4]
mel_lengths = batch[5]
stop_targets = batch[6]
item_idx = batch[7]
d_vectors = batch[8]
speaker_ids = batch[9]
attn_mask = batch[10]
waveform = batch[11]
pitch = batch[13]
text_input = batch["text"]
text_lengths = batch["text_lengths"]
speaker_names = batch["speaker_names"]
linear_input = batch["linear"]
mel_input = batch["mel"]
mel_lengths = batch["mel_lengths"]
stop_targets = batch["stop_targets"]
item_idx = batch["item_idxs"]
d_vectors = batch["d_vectors"]
speaker_ids = batch["speaker_ids"]
attn_mask = batch["attns"]
waveform = batch["waveform"]
pitch = batch["pitch"]
max_text_length = torch.max(text_lengths.float())
max_spec_length = torch.max(mel_lengths.float())
@ -201,7 +201,7 @@ class BaseTTS(BaseModel):
outputs_per_step=config.r if "r" in config else 1,
text_cleaner=config.text_cleaner,
compute_linear_spec=config.model.lower() == "tacotron" or config.compute_linear_spec,
comnpute_f0=config.get("compute_f0", False),
compute_f0=config.get("compute_f0", False),
f0_cache_path=config.get("f0_cache_path", None),
meta_data=data_items,
ap=ap,
@ -252,8 +252,8 @@ class BaseTTS(BaseModel):
# compute pitch frames and write to files.
if config.compute_f0 and rank in [None, 0]:
if not os.path.exists(config.f0_cache_path):
dataset.compute_pitch(config.get("f0_cache_path", None), config.num_loader_workers)
dataset.load_pitch_stats(config.get("f0_cache_path", None))
dataset.pitch_extractor.compute_pitch(config.get("f0_cache_path", None), config.num_loader_workers)
dataset.pitch_extractor.load_pitch_stats(config.get("f0_cache_path", None))
# halt DDP processes for the main process to finish computing the F0 cache
if num_gpus > 1:

View File

@ -134,9 +134,9 @@ class GlowTTS(BaseTTS):
"""
Shapes:
- x: :math:`[B, T]`
- x_lenghts::math:` B`
- x_lenghts::math:`B`
- y: :math:`[B, T, C]`
- y_lengths::math:` B`
- y_lengths::math:`B`
- g: :math:`[B, C] or B`
"""
y = y.transpose(1, 2)