make attn guiding optional

pull/10/head
Eren Golge 2018-04-25 05:43:29 -07:00
parent c82a17cfb2
commit 62158f5906
1 changed files with 12 additions and 12 deletions

View File

@ -91,9 +91,6 @@ def train(model, criterion, data_loader, optimizer, epoch):
params_group['lr'] = current_lr
optimizer.zero_grad()
# setup mk
mk = mk_decay(c.mk, c.epochs, epoch)
# convert inputs to variables
text_input_var = Variable(text_input)
@ -109,9 +106,11 @@ def train(model, criterion, data_loader, optimizer, epoch):
linear_spec_var = linear_spec_var.cuda()
# create attention mask
N = text_input_var.shape[1]
T = mel_spec_var.shape[1] // c.r
M = create_attn_mask(N, T, 0.03)
if c.mk > 0.0:
N = text_input_var.shape[1]
T = mel_spec_var.shape[1] // c.r
M = create_attn_mask(N, T, 0.03)
mk = mk_decay(c.mk, c.epochs, epoch)
# forward pass
mel_output, linear_output, alignments =\
@ -123,9 +122,10 @@ def train(model, criterion, data_loader, optimizer, epoch):
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq],
linear_spec_var[:, :, :n_priority_freq],
mel_lengths_var)
attention_loss = criterion(alignments, M, mel_lengths_var)
print(mk)
loss = mel_loss + linear_loss + mk * attention_loss
loss = mel_loss + linear_loss
if c.mk > 0.0:
attention_loss = criterion(alignments, M, mel_lengths_var)
loss += mk * attention_loss
# backpass and check the grad norm
loss.backward()
@ -155,7 +155,6 @@ def train(model, criterion, data_loader, optimizer, epoch):
tb.add_scalar('TrainIterLoss/LinearLoss', linear_loss.data[0],
current_step)
tb.add_scalar('TrainIterLoss/MelLoss', mel_loss.data[0], current_step)
tb.add_scalar('TrainIterLoss/AttnLoss', attention_loss.data[0], current_step)
tb.add_scalar('Params/LearningRate', optimizer.param_groups[0]['lr'],
current_step)
tb.add_scalar('Params/GradNorm', grad_norm, current_step)
@ -196,14 +195,15 @@ def train(model, criterion, data_loader, optimizer, epoch):
avg_linear_loss /= (num_iter + 1)
avg_mel_loss /= (num_iter + 1)
avg_attn_loss /= (num_iter + 1)
avg_total_loss = avg_mel_loss + avg_linear_loss
# Plot Training Epoch Stats
tb.add_scalar('TrainEpochLoss/TotalLoss', avg_total_loss, current_step)
tb.add_scalar('TrainEpochLoss/LinearLoss', avg_linear_loss, current_step)
tb.add_scalar('TrainEpochLoss/MelLoss', avg_mel_loss, current_step)
tb.add_scalar('TrainEpochLoss/AttnLoss', avg_attn_loss, current_step)
if c.mk > 0:
avg_attn_loss /= (num_iter + 1)
tb.add_scalar('TrainEpochLoss/AttnLoss', avg_attn_loss, current_step)
tb.add_scalar('Time/EpochTime', epoch_time, epoch)
epoch_time = 0