mirror of https://github.com/coqui-ai/TTS.git
add trainer and train_tts
parent
34f8a74e4d
commit
5f07315722
|
@ -0,0 +1,28 @@
|
|||
import os
|
||||
import sys
|
||||
import traceback
|
||||
from TTS.utils.arguments import init_training
|
||||
from TTS.utils.generic_utils import remove_experiment_folder
|
||||
from TTS.trainer import TrainerTTS
|
||||
|
||||
|
||||
def main():
|
||||
# try:
|
||||
args, config, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = init_training(
|
||||
sys.argv)
|
||||
trainer = TrainerTTS(args, config, c_logger, tb_logger, output_path=OUT_PATH)
|
||||
trainer.fit()
|
||||
# except KeyboardInterrupt:
|
||||
# remove_experiment_folder(OUT_PATH)
|
||||
# try:
|
||||
# sys.exit(0)
|
||||
# except SystemExit:
|
||||
# os._exit(0) # pylint: disable=protected-access
|
||||
# except Exception: # pylint: disable=broad-except
|
||||
# remove_experiment_folder(OUT_PATH)
|
||||
# traceback.print_exc()
|
||||
# sys.exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,756 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import traceback
|
||||
from random import randrange
|
||||
import logging
|
||||
import importlib
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
# DISTRIBUTED
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP_th
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data.distributed import DistributedSampler
|
||||
|
||||
from TTS.tts.datasets import load_meta_data, TTSDataset
|
||||
from TTS.tts.layers import setup_loss
|
||||
from TTS.tts.models import setup_model
|
||||
from TTS.tts.utils.io import save_best_model, save_checkpoint
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.tts.utils.synthesis import synthesis
|
||||
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
||||
from TTS.utils.arguments import init_training
|
||||
from TTS.tts.utils.visual import plot_spectrogram, plot_alignment
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
from TTS.utils.distribute import init_distributed, reduce_tensor
|
||||
from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict, find_module
|
||||
from TTS.utils.training import setup_torch_training_env, check_update
|
||||
|
||||
|
||||
@dataclass
|
||||
class TrainingArgs(Coqpit):
|
||||
continue_path: str = field(
|
||||
default='',
|
||||
metadata={
|
||||
'help':
|
||||
'Path to a training folder to continue training. Restore the model from the last checkpoint and continue training under the same folder.'
|
||||
})
|
||||
restore_path: str = field(
|
||||
default='',
|
||||
metadata={
|
||||
'help':
|
||||
'Path to a model checkpoit. Restore the model with the given checkpoint and start a new training.'
|
||||
})
|
||||
best_path: str = field(
|
||||
default='',
|
||||
metadata={
|
||||
'help':
|
||||
"Best model file to be used for extracting best loss. If not specified, the latest best model in continue path is used"
|
||||
})
|
||||
config_path: str = field(
|
||||
default='', metadata={'help': 'Path to the configuration file.'})
|
||||
rank: int = field(
|
||||
default=0, metadata={'help': 'Process rank in distributed training.'})
|
||||
group_id: str = field(
|
||||
default='',
|
||||
metadata={'help': 'Process group id in distributed training.'})
|
||||
|
||||
|
||||
# pylint: disable=import-outside-toplevel, too-many-public-methods
|
||||
class TrainerTTS:
|
||||
use_cuda, num_gpus = setup_torch_training_env(True, False)
|
||||
|
||||
def __init__(self,
|
||||
args,
|
||||
config,
|
||||
c_logger,
|
||||
tb_logger,
|
||||
model=None,
|
||||
output_path=None):
|
||||
self.args = args
|
||||
self.config = config
|
||||
self.c_logger = c_logger
|
||||
self.tb_logger = tb_logger
|
||||
self.output_path = output_path
|
||||
|
||||
self.total_steps_done = 0
|
||||
self.epochs_done = 0
|
||||
self.restore_step = 0
|
||||
self.best_loss = float("inf")
|
||||
self.train_loader = None
|
||||
self.eval_loader = None
|
||||
self.output_audio_path = os.path.join(output_path, 'test_audios')
|
||||
|
||||
self.keep_avg_train = None
|
||||
self.keep_avg_eval = None
|
||||
|
||||
# model, audio processor, datasets, loss
|
||||
# init audio processor
|
||||
self.ap = AudioProcessor(**config.audio.to_dict())
|
||||
|
||||
# init character processor
|
||||
self.model_characters = self.init_character_processor()
|
||||
|
||||
# load dataset samples
|
||||
self.data_train, self.data_eval = load_meta_data(config.datasets)
|
||||
|
||||
# default speaker manager
|
||||
self.speaker_manager = self.init_speaker_manager()
|
||||
|
||||
# init TTS model
|
||||
if model is not None:
|
||||
self.model = model
|
||||
else:
|
||||
self.model = self.init_model()
|
||||
|
||||
# setup criterion
|
||||
self.criterion = self.init_criterion()
|
||||
|
||||
# DISTRUBUTED
|
||||
if self.num_gpus > 1:
|
||||
init_distributed(args.rank, self.num_gpus, args.group_id,
|
||||
config.distributed["backend"],
|
||||
config.distributed["url"])
|
||||
|
||||
# scalers for mixed precision training
|
||||
self.scaler = torch.cuda.amp.GradScaler(
|
||||
) if config.mixed_precision else None
|
||||
|
||||
# setup optimizer
|
||||
self.optimizer = self.init_optimizer(self.model)
|
||||
|
||||
# setup scheduler
|
||||
self.scheduler = self.init_scheduler(self.config, self.optimizer)
|
||||
|
||||
if self.args.restore_path:
|
||||
self.model, self.optimizer, self.scaler, self.restore_step = self.restore_model(
|
||||
self.config, args.restore_path, self.model, self.optimizer,
|
||||
self.scaler)
|
||||
|
||||
if self.use_cuda:
|
||||
self.model.cuda()
|
||||
self.criterion.cuda()
|
||||
|
||||
# DISTRUBUTED
|
||||
if self.num_gpus > 1:
|
||||
self.model = DDP_th(self.model, device_ids=[args.rank])
|
||||
|
||||
# count model size
|
||||
num_params = count_parameters(self.model)
|
||||
logging.info("\n > Model has {} parameters".format(num_params),
|
||||
flush=True)
|
||||
|
||||
def init_model(self):
|
||||
model = setup_model(
|
||||
len(self.model_characters),
|
||||
self.speaker_manager.num_speakers,
|
||||
self.config,
|
||||
self.speaker_manager.x_vector_dim
|
||||
if self.speaker_manager.x_vectors else None,
|
||||
)
|
||||
return model
|
||||
|
||||
def init_optimizer(self, model):
|
||||
optimizer_name = self.config.optimizer
|
||||
optimizer_params = self.config.optimizer_params
|
||||
if optimizer_name.lower() == "radam":
|
||||
module = importlib.import_module("TTS.utils.radam")
|
||||
optimizer = getattr(module, "RAdam")
|
||||
else:
|
||||
optimizer = getattr(torch.optim, optimizer_name)
|
||||
return optimizer(model.parameters(),
|
||||
lr=self.config.lr,
|
||||
**optimizer_params)
|
||||
|
||||
def init_character_processor(self):
|
||||
# setup custom characters if set in config file.
|
||||
# TODO: implement CharacterProcessor
|
||||
if self.config.characters is not None:
|
||||
symbols, phonemes = make_symbols(
|
||||
**self.config.characters.to_dict())
|
||||
else:
|
||||
from TTS.tts.utils.text.symbols import symbols, phonemes
|
||||
model_characters = phonemes if self.config.use_phonemes else symbols
|
||||
return model_characters
|
||||
|
||||
def init_speaker_manager(self, restore_path: str = "", out_path: str = ""):
|
||||
speaker_manager = SpeakerManager()
|
||||
if restore_path:
|
||||
speakers_file = os.path.join(os.path.dirname(restore_path),
|
||||
"speaker.json")
|
||||
if not os.path.exists(speakers_file):
|
||||
logging.info(
|
||||
"WARNING: speakers.json was not found in restore_path, trying to use CONFIG.external_speaker_embedding_file"
|
||||
)
|
||||
speakers_file = self.config.external_speaker_embedding_file
|
||||
|
||||
if self.config.use_external_speaker_embedding_file:
|
||||
speaker_manager.load_x_vectors_file(speakers_file)
|
||||
else:
|
||||
self.speaker_manage.load_speaker_mapping(speakers_file)
|
||||
elif self.config.use_external_speaker_embedding_file and self.config.external_speaker_embedding_file:
|
||||
speaker_manager.load_x_vectors_file(
|
||||
self.config.external_speaker_embedding_file)
|
||||
else:
|
||||
speaker_manager.parse_speakers_from_items(self.data_train)
|
||||
file_path = os.path.join(out_path, "speakers.json")
|
||||
speaker_manager.save_ids_file(file_path)
|
||||
return speaker_manager
|
||||
|
||||
def init_scheduler(self, config, optimizer):
|
||||
lr_scheduler = config.lr_scheduler
|
||||
lr_scheduler_params = config.lr_scheduler_params
|
||||
if lr_scheduler is None:
|
||||
return None
|
||||
if lr_scheduler.lower() == "noamlr":
|
||||
from TTS.utils.training import NoamLR
|
||||
scheduler = NoamLR
|
||||
else:
|
||||
scheduler = getattr(torch.optim, lr_scheduler)
|
||||
return scheduler(optimizer, **lr_scheduler_params)
|
||||
|
||||
def init_criterion(self):
|
||||
return setup_loss(self.config)
|
||||
|
||||
def restore_model(self,
|
||||
config,
|
||||
restore_path,
|
||||
model,
|
||||
optimizer,
|
||||
scaler=None):
|
||||
logging.info(f" > Restoring from {os.path.basename(restore_path)}...")
|
||||
checkpoint = torch.load(restore_path, map_location="cpu")
|
||||
try:
|
||||
logging.info(" > Restoring Model...")
|
||||
model.load_state_dict(checkpoint["model"])
|
||||
# optimizer restore
|
||||
logging.info(" > Restoring Optimizer...")
|
||||
optimizer.load_state_dict(checkpoint["optimizer"])
|
||||
if "scaler" in checkpoint and config.mixed_precision:
|
||||
logging.info(" > Restoring AMP Scaler...")
|
||||
scaler.load_state_dict(checkpoint["scaler"])
|
||||
except (KeyError, RuntimeError):
|
||||
logging.info(" > Partial model initialization...")
|
||||
model_dict = model.state_dict()
|
||||
model_dict = set_init_dict(model_dict, checkpoint["model"], config)
|
||||
model.load_state_dict(model_dict)
|
||||
del model_dict
|
||||
|
||||
for group in optimizer.param_groups:
|
||||
group["lr"] = self.config.lr
|
||||
logging.info(" > Model restored from step %d" % checkpoint["step"],
|
||||
flush=True)
|
||||
restore_step = checkpoint["step"]
|
||||
return model, optimizer, scaler, restore_step
|
||||
|
||||
def _setup_loader(self, r, ap, is_eval, data_items, verbose,
|
||||
speaker_mapping):
|
||||
if is_eval and not self.config.run_eval:
|
||||
loader = None
|
||||
else:
|
||||
dataset = TTSDataset(
|
||||
outputs_per_step=r,
|
||||
text_cleaner=self.config.text_cleaner,
|
||||
compute_linear_spec= 'tacotron' == self.config.model.lower(),
|
||||
meta_data=data_items,
|
||||
ap=ap,
|
||||
tp=self.config.characters,
|
||||
add_blank=self.config["add_blank"],
|
||||
batch_group_size=0 if is_eval else
|
||||
self.config.batch_group_size * self.config.batch_size,
|
||||
min_seq_len=self.config.min_seq_len,
|
||||
max_seq_len=self.config.max_seq_len,
|
||||
phoneme_cache_path=self.config.phoneme_cache_path,
|
||||
use_phonemes=self.config.use_phonemes,
|
||||
phoneme_language=self.config.phoneme_language,
|
||||
enable_eos_bos=self.config.enable_eos_bos_chars,
|
||||
use_noise_augment=not is_eval,
|
||||
verbose=verbose,
|
||||
speaker_mapping=speaker_mapping
|
||||
if self.config.use_speaker_embedding
|
||||
and self.config.use_external_speaker_embedding_file else None,
|
||||
)
|
||||
|
||||
if self.config.use_phonemes and self.config.compute_input_seq_cache:
|
||||
# precompute phonemes to have a better estimate of sequence lengths.
|
||||
dataset.compute_input_seq(self.config.num_loader_workers)
|
||||
dataset.sort_items()
|
||||
|
||||
sampler = DistributedSampler(
|
||||
dataset) if self.num_gpus > 1 else None
|
||||
loader = DataLoader(
|
||||
dataset,
|
||||
batch_size=self.config.eval_batch_size
|
||||
if is_eval else self.config.batch_size,
|
||||
shuffle=False,
|
||||
collate_fn=dataset.collate_fn,
|
||||
drop_last=False,
|
||||
sampler=sampler,
|
||||
num_workers=self.config.num_val_loader_workers
|
||||
if is_eval else self.config.num_loader_workers,
|
||||
pin_memory=False,
|
||||
)
|
||||
return loader
|
||||
|
||||
def setup_train_dataloader(self, r, ap, data_items, verbose,
|
||||
speaker_mapping):
|
||||
return self._setup_loader(r, ap, False, data_items, verbose,
|
||||
speaker_mapping)
|
||||
|
||||
def setup_eval_dataloder(self, r, ap, data_items, verbose,
|
||||
speaker_mapping):
|
||||
return self._setup_loader(r, ap, True, data_items, verbose,
|
||||
speaker_mapping)
|
||||
|
||||
def format_batch(self, batch):
|
||||
# setup input batch
|
||||
text_input = batch[0]
|
||||
text_lengths = batch[1]
|
||||
speaker_names = batch[2]
|
||||
linear_input = batch[3] if self.config.model.lower() in ["tacotron"
|
||||
] else None
|
||||
mel_input = batch[4]
|
||||
mel_lengths = batch[5]
|
||||
stop_targets = batch[6]
|
||||
item_idx = batch[7]
|
||||
speaker_embeddings = batch[8]
|
||||
attn_mask = batch[9]
|
||||
max_text_length = torch.max(text_lengths.float())
|
||||
max_spec_length = torch.max(mel_lengths.float())
|
||||
|
||||
# convert speaker names to ids
|
||||
if self.config.use_speaker_embedding:
|
||||
if self.config.use_external_speaker_embedding_file:
|
||||
speaker_embeddings = batch[8]
|
||||
speaker_ids = None
|
||||
else:
|
||||
speaker_ids = [
|
||||
self.speaker_manager.speaker_ids[speaker_name]
|
||||
for speaker_name in speaker_names
|
||||
]
|
||||
speaker_ids = torch.LongTensor(speaker_ids)
|
||||
speaker_embeddings = None
|
||||
else:
|
||||
speaker_embeddings = None
|
||||
speaker_ids = None
|
||||
|
||||
# compute durations from attention masks
|
||||
if attn_mask is not None:
|
||||
durations = torch.zeros(attn_mask.shape[0], attn_mask.shape[2])
|
||||
for idx, am in enumerate(attn_mask):
|
||||
# compute raw durations
|
||||
c_idxs = am[:, :text_lengths[idx], :mel_lengths[idx]].max(1)[1]
|
||||
# c_idxs, counts = torch.unique_consecutive(c_idxs, return_counts=True)
|
||||
c_idxs, counts = torch.unique(c_idxs, return_counts=True)
|
||||
dur = torch.ones([text_lengths[idx]]).to(counts.dtype)
|
||||
dur[c_idxs] = counts
|
||||
# smooth the durations and set any 0 duration to 1
|
||||
# by cutting off from the largest duration indeces.
|
||||
extra_frames = dur.sum() - mel_lengths[idx]
|
||||
largest_idxs = torch.argsort(-dur)[:extra_frames]
|
||||
dur[largest_idxs] -= 1
|
||||
assert (
|
||||
dur.sum() == mel_lengths[idx]
|
||||
), f" [!] total duration {dur.sum()} vs spectrogram length {mel_lengths[idx]}"
|
||||
durations[idx, :text_lengths[idx]] = dur
|
||||
|
||||
# set stop targets view, we predict a single stop token per iteration.
|
||||
stop_targets = stop_targets.view(text_input.shape[0],
|
||||
stop_targets.size(1) // self.config.r,
|
||||
-1)
|
||||
stop_targets = (stop_targets.sum(2) >
|
||||
0.0).unsqueeze(2).float().squeeze(2)
|
||||
|
||||
# dispatch batch to GPU
|
||||
if self.use_cuda:
|
||||
text_input = text_input.cuda(non_blocking=True)
|
||||
text_lengths = text_lengths.cuda(non_blocking=True)
|
||||
mel_input = mel_input.cuda(non_blocking=True)
|
||||
mel_lengths = mel_lengths.cuda(non_blocking=True)
|
||||
linear_input = linear_input.cuda(
|
||||
non_blocking=True) if self.config.model.lower() in [
|
||||
"tacotron"
|
||||
] else None
|
||||
stop_targets = stop_targets.cuda(non_blocking=True)
|
||||
attn_mask = attn_mask.cuda(
|
||||
non_blocking=True) if attn_mask is not None else None
|
||||
durations = durations.cuda(
|
||||
non_blocking=True) if attn_mask is not None else None
|
||||
if speaker_ids is not None:
|
||||
speaker_ids = speaker_ids.cuda(non_blocking=True)
|
||||
if speaker_embeddings is not None:
|
||||
speaker_embeddings = speaker_embeddings.cuda(non_blocking=True)
|
||||
|
||||
return {
|
||||
"text_input": text_input,
|
||||
"text_lengths": text_lengths,
|
||||
"mel_input": mel_input,
|
||||
"mel_lengths": mel_lengths,
|
||||
"linear_input": linear_input,
|
||||
"stop_targets": stop_targets,
|
||||
"attn_mask": attn_mask,
|
||||
"durations": durations,
|
||||
"speaker_ids": speaker_ids,
|
||||
"x_vectors": speaker_embeddings,
|
||||
"max_text_length": max_text_length,
|
||||
"max_spec_length": max_spec_length,
|
||||
"item_idx": item_idx
|
||||
}
|
||||
|
||||
def train_step(self, batch, batch_n_steps, step, loader_start_time):
|
||||
self.on_train_step_start()
|
||||
step_start_time = time.time()
|
||||
|
||||
# format data
|
||||
batch = self.format_batch(batch)
|
||||
loader_time = time.time() - loader_start_time
|
||||
|
||||
# zero-out optimizer
|
||||
self.optimizer.zero_grad()
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=self.config.mixed_precision):
|
||||
outputs, loss_dict = self.model.train_step(batch, self.criterion)
|
||||
|
||||
# check nan loss
|
||||
if torch.isnan(loss_dict["loss"]).any():
|
||||
raise RuntimeError(
|
||||
f"Detected NaN loss at step {self.total_steps_done}.")
|
||||
|
||||
# optimizer step
|
||||
if self.config.mixed_precision:
|
||||
# model optimizer step in mixed precision mode
|
||||
self.scaler.scale(loss_dict["loss"]).backward()
|
||||
self.scaler.unscale_(self.optimizer)
|
||||
grad_norm, _ = check_update(self.model,
|
||||
self.config.grad_clip,
|
||||
ignore_stopnet=True)
|
||||
self.scaler.step(self.optimizer)
|
||||
self.scaler.update()
|
||||
else:
|
||||
# main model optimizer step
|
||||
loss_dict["loss"].backward()
|
||||
grad_norm, _ = check_update(self.model,
|
||||
self.config.grad_clip,
|
||||
ignore_stopnet=True)
|
||||
self.optimizer.step()
|
||||
|
||||
step_time = time.time() - step_start_time
|
||||
|
||||
# setup lr
|
||||
if self.config.lr_scheduler:
|
||||
self.scheduler.step()
|
||||
|
||||
# detach loss values
|
||||
loss_dict_new = dict()
|
||||
for key, value in loss_dict.items():
|
||||
if isinstance(value, (int, float)):
|
||||
loss_dict_new[key] = value
|
||||
else:
|
||||
loss_dict_new[key] = value.item()
|
||||
loss_dict = loss_dict_new
|
||||
|
||||
# update avg stats
|
||||
update_train_values = dict()
|
||||
for key, value in loss_dict.items():
|
||||
update_train_values["avg_" + key] = value
|
||||
update_train_values["avg_loader_time"] = loader_time
|
||||
update_train_values["avg_step_time"] = step_time
|
||||
self.keep_avg_train.update_values(update_train_values)
|
||||
|
||||
# print training progress
|
||||
current_lr = self.optimizer.param_groups[0]["lr"]
|
||||
if self.total_steps_done % self.config.print_step == 0:
|
||||
log_dict = {
|
||||
"max_spec_length": [batch["max_spec_length"],
|
||||
1], # value, precision
|
||||
"max_text_length": [batch["max_text_length"], 1],
|
||||
"step_time": [step_time, 4],
|
||||
"loader_time": [loader_time, 2],
|
||||
"current_lr": current_lr,
|
||||
}
|
||||
self.c_logger.print_train_step(batch_n_steps, step,
|
||||
self.total_steps_done, log_dict,
|
||||
loss_dict,
|
||||
self.keep_avg_train.avg_values)
|
||||
|
||||
if self.args.rank == 0:
|
||||
# Plot Training Iter Stats
|
||||
# reduce TB load
|
||||
if self.total_steps_done % self.config.tb_plot_step == 0:
|
||||
iter_stats = {
|
||||
"lr": current_lr,
|
||||
"grad_norm": grad_norm,
|
||||
"step_time": step_time,
|
||||
}
|
||||
iter_stats.update(loss_dict)
|
||||
self.tb_logger.tb_train_step_stats(self.total_steps_done,
|
||||
iter_stats)
|
||||
|
||||
if self.total_steps_done % self.config.save_step == 0:
|
||||
if self.config.checkpoint:
|
||||
# save model
|
||||
save_checkpoint(
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.total_steps_done,
|
||||
self.epochs_done,
|
||||
self.config.r,
|
||||
self.output_path,
|
||||
model_loss=loss_dict["loss"],
|
||||
characters=self.model_characters,
|
||||
scaler=self.scaler.state_dict()
|
||||
if self.config.mixed_precision else None,
|
||||
)
|
||||
# training visualizations
|
||||
figures, audios = self.model.train_log(self.ap, batch, outputs)
|
||||
self.tb_logger.tb_train_figures(self.total_steps_done, figures)
|
||||
self.tb_logger.tb_train_audios(self.total_steps_done,
|
||||
{"TrainAudio": audios},
|
||||
self.ap.sample_rate)
|
||||
self.total_steps_done += 1
|
||||
self.on_train_step_end()
|
||||
return outputs, loss_dict
|
||||
|
||||
def train_epoch(self):
|
||||
self.model.train()
|
||||
epoch_start_time = time.time()
|
||||
if self.use_cuda:
|
||||
batch_num_steps = int(
|
||||
len(self.train_loader.dataset) /
|
||||
(self.config.batch_size * self.num_gpus))
|
||||
else:
|
||||
batch_num_steps = int(
|
||||
len(self.train_loader.dataset) / self.config.batch_size)
|
||||
self.c_logger.print_train_start()
|
||||
loader_start_time = time.time()
|
||||
for cur_step, batch in enumerate(self.train_loader):
|
||||
_, _ = self.train_step(batch, batch_num_steps, cur_step,
|
||||
loader_start_time)
|
||||
epoch_time = time.time() - epoch_start_time
|
||||
# Plot self.epochs_done Stats
|
||||
if self.args.rank == 0:
|
||||
epoch_stats = {"epoch_time": epoch_time}
|
||||
epoch_stats.update(self.keep_avg_train.avg_values)
|
||||
self.tb_logger.tb_train_epoch_stats(self.total_steps_done,
|
||||
epoch_stats)
|
||||
if self.config.tb_model_param_stats:
|
||||
self.tb_logger.tb_model_weights(self.model,
|
||||
self.total_steps_done)
|
||||
|
||||
def eval_step(self, batch, step):
|
||||
with torch.no_grad():
|
||||
step_start_time = time.time()
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=self.config.mixed_precision):
|
||||
outputs, loss_dict = self.model.eval_step(
|
||||
batch, self.criterion)
|
||||
|
||||
step_time = time.time() - step_start_time
|
||||
|
||||
# detach loss values
|
||||
loss_dict_new = dict()
|
||||
for key, value in loss_dict.items():
|
||||
if isinstance(value, (int, float)):
|
||||
loss_dict_new[key] = value
|
||||
else:
|
||||
loss_dict_new[key] = value.item()
|
||||
loss_dict = loss_dict_new
|
||||
|
||||
# update avg stats
|
||||
update_eval_values = dict()
|
||||
for key, value in loss_dict.items():
|
||||
update_eval_values["avg_" + key] = value
|
||||
update_eval_values["avg_step_time"] = step_time
|
||||
self.keep_avg_eval.update_values(update_eval_values)
|
||||
|
||||
if self.config.print_eval:
|
||||
self.c_logger.print_eval_step(step, loss_dict,
|
||||
self.keep_avg_eval.avg_values)
|
||||
return outputs, loss_dict
|
||||
|
||||
def eval_epoch(self):
|
||||
self.model.eval()
|
||||
if self.use_cuda:
|
||||
batch_num_steps = int(
|
||||
len(self.train_loader.dataset) /
|
||||
(self.config.batch_size * self.num_gpus))
|
||||
else:
|
||||
batch_num_steps = int(
|
||||
len(self.train_loader.dataset) / self.config.batch_size)
|
||||
self.c_logger.print_eval_start()
|
||||
loader_start_time = time.time()
|
||||
for cur_step, batch in enumerate(self.eval_loader):
|
||||
# format data
|
||||
batch = self.format_batch(batch)
|
||||
loader_time = time.time() - loader_start_time
|
||||
self.keep_avg_eval.update_values({'avg_loader_time': loader_time})
|
||||
outputs, _ = self.eval_step(batch, cur_step)
|
||||
# Plot epoch stats and samples from the last batch.
|
||||
if self.args.rank == 0:
|
||||
figures, eval_audios = self.model.eval_log(self.ap, batch, outputs)
|
||||
self.tb_logger.tb_eval_figures(self.total_steps_done, figures)
|
||||
self.tb_logger.tb_eval_audios(self.total_steps_done,
|
||||
{"EvalAudio": eval_audios},
|
||||
self.ap.sample_rate)
|
||||
|
||||
def test_run(self, ):
|
||||
logging.info(" | > Synthesizing test sentences.")
|
||||
test_audios = {}
|
||||
test_figures = {}
|
||||
test_sentences = self.config.test_sentences
|
||||
cond_inputs = self._get_cond_inputs()
|
||||
for idx, sen in enumerate(test_sentences):
|
||||
wav, alignment, model_outputs, _ = synthesis(
|
||||
self.model,
|
||||
sen,
|
||||
self.config,
|
||||
self.use_cuda,
|
||||
self.ap,
|
||||
speaker_id=cond_inputs['speaker_id'],
|
||||
x_vector=cond_inputs['x_vector'],
|
||||
style_wav=cond_inputs['style_wav'],
|
||||
enable_eos_bos_chars=self.config.enable_eos_bos_chars,
|
||||
use_griffin_lim=True,
|
||||
do_trim_silence=False,
|
||||
).values()
|
||||
|
||||
file_path = os.path.join(self.output_audio_path, str(self.total_steps_done))
|
||||
os.makedirs(file_path, exist_ok=True)
|
||||
file_path = os.path.join(file_path, "TestSentence_{}.wav".format(idx))
|
||||
self.ap.save_wav(wav, file_path)
|
||||
test_audios["{}-audio".format(idx)] = wav
|
||||
test_figures["{}-prediction".format(idx)] = plot_spectrogram(
|
||||
model_outputs, self.ap, output_fig=False)
|
||||
test_figures["{}-alignment".format(idx)] = plot_alignment(
|
||||
alignment, output_fig=False)
|
||||
|
||||
self.tb_logger.tb_test_audios(self.total_steps_done, test_audios,
|
||||
self.config.audio["sample_rate"])
|
||||
self.tb_logger.tb_test_figures(self.total_steps_done, test_figures)
|
||||
|
||||
def _get_cond_inputs(self):
|
||||
# setup speaker_id
|
||||
speaker_id = 0 if self.config.use_speaker_embedding else None
|
||||
# setup x_vector
|
||||
x_vector = self.speaker_manager.get_x_vectors_by_speaker(
|
||||
self.speaker_manager.speaker_ids[0]
|
||||
) if self.config.use_external_speaker_embedding_file and self.config.use_speaker_embedding else None
|
||||
# setup style_mel
|
||||
if self.config.has('gst_style_input'):
|
||||
style_wav = self.config.gst_style_input
|
||||
else:
|
||||
style_wav = None
|
||||
if style_wav is None and 'use_gst' in self.config and self.config.use_gst:
|
||||
# inicialize GST with zero dict.
|
||||
style_wav = {}
|
||||
print("WARNING: You don't provided a gst style wav, for this reason we use a zero tensor!")
|
||||
for i in range(self.config.gst["gst_num_style_tokens"]):
|
||||
style_wav[str(i)] = 0
|
||||
cond_inputs = {'speaker_id': speaker_id, 'style_wav': style_wav, 'x_vector': x_vector}
|
||||
return cond_inputs
|
||||
|
||||
def fit(self):
|
||||
if self.restore_step != 0 or self.args.best_path:
|
||||
logging.info(" > Restoring best loss from "
|
||||
f"{os.path.basename(self.args.best_path)} ...")
|
||||
self.best_loss = torch.load(self.args.best_path,
|
||||
map_location="cpu")["model_loss"]
|
||||
logging.info(
|
||||
f" > Starting with loaded last best loss {self.best_loss}.")
|
||||
|
||||
# define data loaders
|
||||
self.train_loader = self.setup_train_dataloader(
|
||||
self.config.r,
|
||||
self.ap,
|
||||
self.data_train,
|
||||
verbose=True,
|
||||
speaker_mapping=self.speaker_manager.speaker_ids)
|
||||
self.eval_loader = self.setup_eval_dataloder(
|
||||
self.config.r,
|
||||
self.ap,
|
||||
self.data_train,
|
||||
verbose=True,
|
||||
speaker_mapping=self.speaker_manager.speaker_ids
|
||||
) if self.config.run_eval else None
|
||||
|
||||
self.total_steps_done = self.restore_step
|
||||
|
||||
for epoch in range(0, self.config.epochs):
|
||||
self.on_epoch_start()
|
||||
self.keep_avg_train = KeepAverage()
|
||||
self.keep_avg_eval = KeepAverage(
|
||||
) if self.config.run_eval else None
|
||||
self.epochs_done = epoch
|
||||
self.c_logger.print_epoch_start(epoch, self.config.epochs)
|
||||
self.train_epoch()
|
||||
if self.config.run_eval:
|
||||
self.eval_epoch()
|
||||
if epoch >= self.config.test_delay_epochs:
|
||||
self.test_run()
|
||||
self.c_logger.print_epoch_end(
|
||||
epoch, self.keep_avg_eval.avg_values
|
||||
if self.config.run_eval else self.keep_avg_train.avg_values)
|
||||
self.save_best_model()
|
||||
self.on_epoch_end()
|
||||
|
||||
def save_best_model(self):
|
||||
self.best_loss = save_best_model(
|
||||
self.keep_avg_eval['avg_loss']
|
||||
if self.keep_avg_eval else self.keep_avg_train['avg_loss'],
|
||||
self.best_loss,
|
||||
self.model,
|
||||
self.optimizer,
|
||||
self.total_steps_done,
|
||||
self.epochs_done,
|
||||
self.config.r,
|
||||
self.output_path,
|
||||
self.model_characters,
|
||||
keep_all_best=self.config.keep_all_best,
|
||||
keep_after=self.config.keep_after,
|
||||
scaler=self.scaler.state_dict()
|
||||
if self.config.mixed_precision else None,
|
||||
)
|
||||
|
||||
def on_epoch_start(self):
|
||||
if hasattr(self.model, 'on_epoch_start'):
|
||||
self.model.on_epoch_start(self)
|
||||
|
||||
if hasattr(self.criterion, "on_epoch_start"):
|
||||
self.criterion.on_epoch_start(self)
|
||||
|
||||
if hasattr(self.optimizer, "on_epoch_start"):
|
||||
self.optimizer.on_epoch_start(self)
|
||||
|
||||
def on_epoch_end(self):
|
||||
if hasattr(self.model, "on_epoch_start"):
|
||||
self.model.on_epoch_end(self)
|
||||
|
||||
if hasattr(self.criterion, "on_epoch_end"):
|
||||
self.criterion.on_epoch_end(self)
|
||||
|
||||
if hasattr(self.optimizer, "on_epoch_end"):
|
||||
self.optimizer.on_epoch_end(self)
|
||||
|
||||
def on_train_step_start(self):
|
||||
if hasattr(self.model, "on_epoch_start"):
|
||||
self.model.on_train_step_start(self)
|
||||
|
||||
if hasattr(self.criterion, "on_train_step_start"):
|
||||
self.criterion.on_train_step_start(self)
|
||||
|
||||
if hasattr(self.optimizer, "on_train_step_start"):
|
||||
self.optimizer.on_train_step_start(self)
|
||||
|
||||
def on_train_step_end(self):
|
||||
if hasattr(self.model, "on_train_step_end"):
|
||||
self.model.on_train_step_end(self)
|
||||
|
||||
if hasattr(self.criterion, "on_train_step_end"):
|
||||
self.criterion.on_train_step_end(self)
|
||||
|
||||
if hasattr(self.optimizer, "on_train_step_end"):
|
||||
self.optimizer.on_train_step_end(self)
|
Loading…
Reference in New Issue