provide meta data list externally

pull/10/head
Eren Golge 2019-07-15 15:38:58 +02:00
parent f8195834ee
commit 59a0606e06
2 changed files with 6 additions and 8 deletions

View File

@ -14,11 +14,10 @@ from utils.data import (prepare_data, pad_per_step, prepare_tensor,
class MyDataset(Dataset):
def __init__(self,
root_path,
meta_file,
outputs_per_step,
text_cleaner,
ap,
preprocessor,
meta_data,
batch_group_size=0,
min_seq_len=0,
max_seq_len=float("inf"),
@ -30,13 +29,10 @@ class MyDataset(Dataset):
"""
Args:
root_path (str): root path for the data folder.
meta_file (str): name for dataset file including audio transcripts
and file names (or paths in cached mode).
outputs_per_step (int): number of time frames predicted per step.
text_cleaner (str): text cleaner used for the dataset.
ap (TTS.utils.AudioProcessor): audio processor object.
preprocessor (dataset.preprocess.Class): preprocessor for the dataset.
Create your own if you need to run a new dataset.
meta_data (list): list of dataset instances.
speaker_id_cache_path (str): path where the speaker name to id
mapping is stored
batch_group_size (int): (0) range of batch randomization after sorting
@ -53,7 +49,7 @@ class MyDataset(Dataset):
"""
self.root_path = root_path
self.batch_group_size = batch_group_size
self.items = preprocessor(root_path, meta_file)
self.items = meta_data
self.outputs_per_step = outputs_per_step
self.sample_rate = ap.sample_rate
self.cleaners = text_cleaner

View File

@ -146,7 +146,7 @@ def common_voice(root_path, meta_file):
return items
def libri_tts(root_path, meta_files=None):
def libri_tts(root_path, meta_files=None, is_eval=False):
"""https://ai.google/tools/datasets/libri-tts/"""
items = []
if meta_files is None:
@ -164,4 +164,6 @@ def libri_tts(root_path, meta_files=None):
items.append([text, wav_file, speaker_name])
for item in items:
assert os.path.exists(item[1]), f" [!] wav file is not exist - {item[1]}"
if meta_files is None:
return items[:500] if is_eval else items[500:]
return items