mirror of https://github.com/coqui-ai/TTS.git
provide meta data list externally
parent
f8195834ee
commit
59a0606e06
|
@ -14,11 +14,10 @@ from utils.data import (prepare_data, pad_per_step, prepare_tensor,
|
|||
class MyDataset(Dataset):
|
||||
def __init__(self,
|
||||
root_path,
|
||||
meta_file,
|
||||
outputs_per_step,
|
||||
text_cleaner,
|
||||
ap,
|
||||
preprocessor,
|
||||
meta_data,
|
||||
batch_group_size=0,
|
||||
min_seq_len=0,
|
||||
max_seq_len=float("inf"),
|
||||
|
@ -30,13 +29,10 @@ class MyDataset(Dataset):
|
|||
"""
|
||||
Args:
|
||||
root_path (str): root path for the data folder.
|
||||
meta_file (str): name for dataset file including audio transcripts
|
||||
and file names (or paths in cached mode).
|
||||
outputs_per_step (int): number of time frames predicted per step.
|
||||
text_cleaner (str): text cleaner used for the dataset.
|
||||
ap (TTS.utils.AudioProcessor): audio processor object.
|
||||
preprocessor (dataset.preprocess.Class): preprocessor for the dataset.
|
||||
Create your own if you need to run a new dataset.
|
||||
meta_data (list): list of dataset instances.
|
||||
speaker_id_cache_path (str): path where the speaker name to id
|
||||
mapping is stored
|
||||
batch_group_size (int): (0) range of batch randomization after sorting
|
||||
|
@ -53,7 +49,7 @@ class MyDataset(Dataset):
|
|||
"""
|
||||
self.root_path = root_path
|
||||
self.batch_group_size = batch_group_size
|
||||
self.items = preprocessor(root_path, meta_file)
|
||||
self.items = meta_data
|
||||
self.outputs_per_step = outputs_per_step
|
||||
self.sample_rate = ap.sample_rate
|
||||
self.cleaners = text_cleaner
|
||||
|
|
|
@ -146,7 +146,7 @@ def common_voice(root_path, meta_file):
|
|||
return items
|
||||
|
||||
|
||||
def libri_tts(root_path, meta_files=None):
|
||||
def libri_tts(root_path, meta_files=None, is_eval=False):
|
||||
"""https://ai.google/tools/datasets/libri-tts/"""
|
||||
items = []
|
||||
if meta_files is None:
|
||||
|
@ -164,4 +164,6 @@ def libri_tts(root_path, meta_files=None):
|
|||
items.append([text, wav_file, speaker_name])
|
||||
for item in items:
|
||||
assert os.path.exists(item[1]), f" [!] wav file is not exist - {item[1]}"
|
||||
if meta_files is None:
|
||||
return items[:500] if is_eval else items[500:]
|
||||
return items
|
Loading…
Reference in New Issue