better stats logging for TTS training

pull/1/head
erogol 2020-06-10 13:45:43 +02:00
parent 6d2cda97c8
commit 53f13461b9
1 changed files with 45 additions and 87 deletions

132
train.py
View File

@ -119,21 +119,7 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
verbose=(epoch == 0))
model.train()
epoch_time = 0
train_values = {
'avg_postnet_loss': 0,
'avg_decoder_loss': 0,
'avg_stopnet_loss': 0,
'avg_align_error': 0,
'avg_step_time': 0,
'avg_loader_time': 0
}
if c.bidirectional_decoder:
train_values['avg_decoder_b_loss'] = 0 # decoder backward loss
train_values['avg_decoder_c_loss'] = 0 # decoder consistency loss
if c.ga_alpha > 0:
train_values['avg_ga_loss'] = 0 # guidede attention loss
keep_avg = KeepAverage()
keep_avg.add_values(train_values)
if use_cuda:
batch_n_iter = int(
len(data_loader.dataset) / (c.batch_size * num_gpus))
@ -179,11 +165,6 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
mel_lengths, decoder_backward_output,
alignments, alignment_lengths, alignments_backward,
text_lengths)
if c.bidirectional_decoder:
keep_avg.update_values({'avg_decoder_b_loss': loss_dict['decoder_backward_loss'].item(),
'avg_decoder_c_loss': loss_dict['decoder_c_loss'].item()})
if c.ga_alpha > 0:
keep_avg.update_values({'avg_ga_loss': loss_dict['ga_loss'].item()})
# backward pass
loss_dict['loss'].backward()
@ -193,7 +174,6 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
# compute alignment error (the lower the better )
align_error = 1 - alignment_diagonal_score(alignments)
keep_avg.update_value('avg_align_error', align_error)
loss_dict['align_error'] = align_error
# backpass and check the grad norm for stop loss
@ -208,23 +188,6 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
step_time = time.time() - start_time
epoch_time += step_time
# update avg stats
update_train_values = {
'avg_postnet_loss': float(loss_dict['postnet_loss'].item()),
'avg_decoder_loss': float(loss_dict['decoder_loss'].item()),
'avg_stopnet_loss': loss_dict['stopnet_loss'].item() \
if isinstance(loss_dict['stopnet_loss'], float) else float(loss_dict['stopnet_loss'].item()),
'avg_step_time': step_time,
'avg_loader_time': loader_time
}
keep_avg.update_values(update_train_values)
if global_step % c.print_step == 0:
c_logger.print_train_step(batch_n_iter, num_iter, global_step,
avg_spec_length, avg_text_length,
step_time, loader_time, current_lr,
loss_dict, keep_avg.avg_values)
# aggregate losses from processes
if num_gpus > 1:
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
@ -232,6 +195,30 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus) if c.stopnet else loss_dict['stopnet_loss']
# detach loss values
loss_dict_new = dict()
for key, value in loss_dict.items():
if isinstance(value, int) or isinstance(value, float):
loss_dict_new[key] = value
else:
loss_dict_new[key] = value.item()
loss_dict = loss_dict_new
# update avg stats
update_train_values = dict()
for key, value in loss_dict.items():
update_train_values['avg_' + key] = value
update_train_values['avg_loader_time'] = loader_time
update_train_values['avg_step_time'] = step_time
keep_avg.update_values(update_train_values)
# print training progress
if global_step % c.print_step == 0:
c_logger.print_train_step(batch_n_iter, num_iter, global_step,
avg_spec_length, avg_text_length,
step_time, loader_time, current_lr,
loss_dict, keep_avg.avg_values)
if args.rank == 0:
# Plot Training Iter Stats
# reduce TB load
@ -266,7 +253,7 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
"alignment": plot_alignment(align_img),
}
if c.bidirectional_decoder:
if c.bidirectional_decoder or c.double_decoder_consistency:
figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy())
tb_logger.tb_train_figures(global_step, figures)
@ -286,16 +273,8 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
# Plot Epoch Stats
if args.rank == 0:
# Plot Training Epoch Stats
epoch_stats = {
"loss_postnet": keep_avg['avg_postnet_loss'],
"loss_decoder": keep_avg['avg_decoder_loss'],
"stopnet_loss": keep_avg['avg_stopnet_loss'],
"alignment_error": keep_avg['avg_align_error'],
"epoch_time": epoch_time
}
if c.ga_alpha > 0:
epoch_stats['guided_attention_loss'] = keep_avg['avg_ga_loss']
epoch_stats = {"epoch_time": epoch_time}
epoch_stats.update(keep_avg.avg_values)
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
if c.tb_model_param_stats:
tb_logger.tb_model_weights(model, global_step)
@ -307,20 +286,7 @@ def evaluate(model, criterion, ap, global_step, epoch):
data_loader = setup_loader(ap, model.decoder.r, is_val=True)
model.eval()
epoch_time = 0
eval_values_dict = {
'avg_postnet_loss': 0,
'avg_decoder_loss': 0,
'avg_stopnet_loss': 0,
'avg_align_error': 0
}
if c.bidirectional_decoder:
eval_values_dict['avg_decoder_b_loss'] = 0 # decoder backward loss
eval_values_dict['avg_decoder_c_loss'] = 0 # decoder consistency loss
if c.ga_alpha > 0:
eval_values_dict['avg_ga_loss'] = 0 # guidede attention loss
keep_avg = KeepAverage()
keep_avg.add_values(eval_values_dict)
c_logger.print_eval_start()
if data_loader is not None:
for num_iter, data in enumerate(data_loader):
@ -352,11 +318,6 @@ def evaluate(model, criterion, ap, global_step, epoch):
mel_lengths, decoder_backward_output,
alignments, alignment_lengths, alignments_backward,
text_lengths)
if c.bidirectional_decoder:
keep_avg.update_values({'avg_decoder_b_loss': loss_dict['decoder_b_loss'].item(),
'avg_decoder_c_loss': loss_dict['decoder_c_loss'].item()})
if c.ga_alpha > 0:
keep_avg.update_values({'avg_ga_loss': loss_dict['ga_loss'].item()})
# step time
step_time = time.time() - start_time
@ -364,7 +325,7 @@ def evaluate(model, criterion, ap, global_step, epoch):
# compute alignment score
align_error = 1 - alignment_diagonal_score(alignments)
keep_avg.update_value('avg_align_error', align_error)
loss_dict['align_error'] = align_error
# aggregate losses from processes
if num_gpus > 1:
@ -373,14 +334,20 @@ def evaluate(model, criterion, ap, global_step, epoch):
if c.stopnet:
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus)
keep_avg.update_values({
'avg_postnet_loss':
float(loss_dict['postnet_loss'].item()),
'avg_decoder_loss':
float(loss_dict['decoder_loss'].item()),
'avg_stopnet_loss':
float(loss_dict['stopnet_loss'].item()),
})
# detach loss values
loss_dict_new = dict()
for key, value in loss_dict.items():
if isinstance(value, int) or isinstance(value, float):
loss_dict_new[key] = value
else:
loss_dict_new[key] = value.item()
loss_dict = loss_dict_new
# update avg stats
update_train_values = dict()
for key, value in loss_dict.items():
update_train_values['avg_' + key] = value
keep_avg.update_values(update_train_values)
if c.print_eval:
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
@ -409,20 +376,11 @@ def evaluate(model, criterion, ap, global_step, epoch):
c.audio["sample_rate"])
# Plot Validation Stats
epoch_stats = {
"loss_postnet": keep_avg['avg_postnet_loss'],
"loss_decoder": keep_avg['avg_decoder_loss'],
"stopnet_loss": keep_avg['avg_stopnet_loss'],
"alignment_error": keep_avg['avg_align_error'],
}
if c.bidirectional_decoder:
epoch_stats['loss_decoder_backward'] = keep_avg['avg_decoder_b_loss']
if c.bidirectional_decoder or c.double_decoder_consistency:
align_b_img = alignments_backward[idx].data.cpu().numpy()
eval_figures['alignment_backward'] = plot_alignment(align_b_img)
if c.ga_alpha > 0:
epoch_stats['guided_attention_loss'] = keep_avg['avg_ga_loss']
tb_logger.tb_eval_stats(global_step, epoch_stats)
eval_figures['alignment2'] = plot_alignment(align_b_img)
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
tb_logger.tb_eval_figures(global_step, eval_figures)
if args.rank == 0 and epoch > c.test_delay_epochs: