layer norm before GLU

pull/10/head
erogol 2020-08-16 17:49:56 +02:00
parent 45fbc0d003
commit 53523eebbe
1 changed files with 139 additions and 0 deletions

View File

@ -0,0 +1,139 @@
import math
import torch
from torch import nn
from torch.nn import functional as F
from mozilla_voice_tts.tts.utils.generic_utils import sequence_mask
from mozilla_voice_tts.tts.layers.glow_tts.glow import ConvLayerNorm, LayerNorm
from mozilla_voice_tts.tts.layers.glow_tts.duration_predictor import DurationPredictor
from mozilla_voice_tts.tts.layers.tacotron2 import ConvBNBlock
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
self.register_buffer('pe', self._get_pe_matrix(d_model, max_len))
def forward(self, x):
return x + self.pe[:x.size(0)].unsqueeze(1)
def _get_pe_matrix(self, d_model, max_len):
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.pow(10000,
torch.arange(0, d_model, 2).float() / d_model)
pe[:, 0::2] = torch.sin(position / div_term)
pe[:, 1::2] = torch.cos(position / div_term)
return pe
class ConvBlock(nn.Module):
def __init__(self, in_out_channels, kernel_size, dropout_p):
super().__init__()
self.conv_layer = nn.Conv1d(in_out_channels, 2 * in_out_channels, kernel_size, padding=kernel_size//2)
self.dropout = nn.Dropout(dropout_p)
self.layer_norm = LayerNorm(2 * in_out_channels)
self.glu = nn.GLU(1)
def forward(self, x, x_mask):
res = x
o = self.dropout(x)
o = self.conv_layer(o * x_mask)
o = self.layer_norm(o)
o = self.glu(o)
return res + o
class Encoder(nn.Module):
"""Glow-TTS encoder module. We use Pytorch TransformerEncoder instead
of the one with relative position embedding. We use positional encoding
for capturing positiong information.
Args:
num_chars (int): number of characters.
out_channels (int): number of output channels.
hidden_channels (int): encoder's embedding size.
filter_channels (int): transformer's feed-forward channels.
num_head (int): number of attention heads in transformer.
num_layers (int): number of transformer encoder stack.
kernel_size (int): kernel size for conv layers and duration predictor.
dropout_p (float): dropout rate for any dropout layer.
mean_only (bool): if True, output only mean values and use constant std.
use_prenet (bool): if True, use pre-convolutional layers before transformer layers.
c_in_channels (int): number of channels in conditional input.
Shapes:
- input: (B, T, C)
"""
def __init__(self,
num_chars,
out_channels,
hidden_channels,
filter_channels,
filter_channels_dp,
num_layers,
kernel_size,
dropout_p,
mean_only=False,
use_prenet=False,
c_in_channels=0):
super().__init__()
self.num_chars = num_chars
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.filter_channels = filter_channels
self.filter_channels_dp = filter_channels_dp
self.num_layers = num_layers
self.kernel_size = kernel_size
self.dropout_p = dropout_p
self.mean_only = mean_only
self.use_prenet = use_prenet
self.c_in_channels = c_in_channels
self.emb = nn.Embedding(num_chars, hidden_channels)
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
self.encoder = nn.ModuleList()
for i in range(num_layers + 3):
self.encoder += [ConvBlock(hidden_channels, kernel_size=5, dropout_p=dropout_p)]
self.proj_m = nn.Conv1d(hidden_channels, out_channels, 1)
if not mean_only:
self.proj_s = nn.Conv1d(hidden_channels, out_channels, 1)
self.duration_predictor = DurationPredictor(
hidden_channels + c_in_channels, filter_channels_dp, kernel_size,
dropout_p)
def forward(self, x, x_lengths, g=None):
# pass embedding layer
# [B ,T, D]
x = self.emb(x)
# x += self.pe[:x.shape[1]].unsqueeze(0)
# [B, D, T]
x = torch.transpose(x, 1, -1)
# compute input sequence mask
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)),
1).to(x.dtype)
# pass encoder
for layer in self.encoder:
x = layer(x)
# set duration predictor input
if g is not None:
g_exp = g.expand(-1, -1, x.size(-1))
x_dp = torch.cat([torch.detach(x), g_exp], 1)
else:
x_dp = torch.detach(x)
# pass final projection layer
x_m = self.proj_m(x) * x_mask
if not self.mean_only:
x_logs = self.proj_s(x) * x_mask
else:
x_logs = torch.zeros_like(x_m)
# pass duration predictor
logw = self.duration_predictor(x_dp, x_mask)
return x_m, x_logs, logw, x_mask