mirror of https://github.com/coqui-ai/TTS.git
compute audio feat on dataload
parent
4d5da4b663
commit
4a989e3ceb
|
@ -29,8 +29,8 @@ from TTS.utils.generic_utils import (
|
|||
from TTS.vocoder.datasets.wavernn_dataset import WaveRNNDataset
|
||||
from TTS.vocoder.datasets.preprocess import (
|
||||
find_feat_files,
|
||||
load_wav_feat_data,
|
||||
preprocess_wav_files,
|
||||
load_wav_data,
|
||||
load_wav_feat_data
|
||||
)
|
||||
from TTS.vocoder.utils.distribution import discretized_mix_logistic_loss, gaussian_loss
|
||||
from TTS.vocoder.utils.generic_utils import setup_wavernn
|
||||
|
@ -41,15 +41,16 @@ use_cuda, num_gpus = setup_torch_training_env(True, True)
|
|||
|
||||
|
||||
def setup_loader(ap, is_val=False, verbose=False):
|
||||
if is_val and not CONFIG.run_eval:
|
||||
if is_val and not c.run_eval:
|
||||
loader = None
|
||||
else:
|
||||
dataset = WaveRNNDataset(ap=ap,
|
||||
items=eval_data if is_val else train_data,
|
||||
seq_len=CONFIG.seq_len,
|
||||
seq_len=c.seq_len,
|
||||
hop_len=ap.hop_length,
|
||||
pad=CONFIG.padding,
|
||||
mode=CONFIG.mode,
|
||||
pad=c.padding,
|
||||
mode=c.mode,
|
||||
mulaw=c.mulaw,
|
||||
is_training=not is_val,
|
||||
verbose=verbose,
|
||||
)
|
||||
|
@ -57,10 +58,10 @@ def setup_loader(ap, is_val=False, verbose=False):
|
|||
loader = DataLoader(dataset,
|
||||
shuffle=True,
|
||||
collate_fn=dataset.collate,
|
||||
batch_size=CONFIG.batch_size,
|
||||
num_workers=CONFIG.num_val_loader_workers
|
||||
batch_size=c.batch_size,
|
||||
num_workers=c.num_val_loader_workers
|
||||
if is_val
|
||||
else CONFIG.num_loader_workers,
|
||||
else c.num_loader_workers,
|
||||
pin_memory=True,
|
||||
)
|
||||
return loader
|
||||
|
@ -89,9 +90,9 @@ def train(model, optimizer, criterion, scheduler, ap, global_step, epoch):
|
|||
keep_avg = KeepAverage()
|
||||
if use_cuda:
|
||||
batch_n_iter = int(len(data_loader.dataset) /
|
||||
(CONFIG.batch_size * num_gpus))
|
||||
(c.batch_size * num_gpus))
|
||||
else:
|
||||
batch_n_iter = int(len(data_loader.dataset) / CONFIG.batch_size)
|
||||
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
|
||||
end_time = time.time()
|
||||
c_logger.print_train_start()
|
||||
# train loop
|
||||
|
@ -102,9 +103,6 @@ def train(model, optimizer, criterion, scheduler, ap, global_step, epoch):
|
|||
loader_time = time.time() - end_time
|
||||
global_step += 1
|
||||
|
||||
##################
|
||||
# MODEL TRAINING #
|
||||
##################
|
||||
y_hat = model(x_input, mels)
|
||||
|
||||
if isinstance(model.mode, int):
|
||||
|
@ -112,7 +110,6 @@ def train(model, optimizer, criterion, scheduler, ap, global_step, epoch):
|
|||
else:
|
||||
y_coarse = y_coarse.float()
|
||||
y_coarse = y_coarse.unsqueeze(-1)
|
||||
# m_scaled, _ = model.upsample(m)
|
||||
|
||||
# compute losses
|
||||
loss = criterion(y_hat, y_coarse)
|
||||
|
@ -120,11 +117,11 @@ def train(model, optimizer, criterion, scheduler, ap, global_step, epoch):
|
|||
raise RuntimeError(" [!] None loss. Exiting ...")
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
if CONFIG.grad_clip > 0:
|
||||
if c.grad_clip > 0:
|
||||
torch.nn.utils.clip_grad_norm_(
|
||||
model.parameters(), CONFIG.grad_clip)
|
||||
|
||||
model.parameters(), c.grad_clip)
|
||||
optimizer.step()
|
||||
|
||||
if scheduler is not None:
|
||||
scheduler.step()
|
||||
|
||||
|
@ -144,7 +141,7 @@ def train(model, optimizer, criterion, scheduler, ap, global_step, epoch):
|
|||
keep_avg.update_values(update_train_values)
|
||||
|
||||
# print training stats
|
||||
if global_step % CONFIG.print_step == 0:
|
||||
if global_step % c.print_step == 0:
|
||||
log_dict = {"step_time": [step_time, 2],
|
||||
"loader_time": [loader_time, 4],
|
||||
"current_lr": cur_lr,
|
||||
|
@ -164,8 +161,8 @@ def train(model, optimizer, criterion, scheduler, ap, global_step, epoch):
|
|||
tb_logger.tb_train_iter_stats(global_step, iter_stats)
|
||||
|
||||
# save checkpoint
|
||||
if global_step % CONFIG.save_step == 0:
|
||||
if CONFIG.checkpoint:
|
||||
if global_step % c.save_step == 0:
|
||||
if c.checkpoint:
|
||||
# save model
|
||||
save_checkpoint(model,
|
||||
optimizer,
|
||||
|
@ -180,28 +177,30 @@ def train(model, optimizer, criterion, scheduler, ap, global_step, epoch):
|
|||
)
|
||||
|
||||
# synthesize a full voice
|
||||
wav_path = train_data[random.randrange(0, len(train_data))][0]
|
||||
rand_idx = random.randrange(0, len(train_data))
|
||||
wav_path = train_data[rand_idx] if not isinstance(
|
||||
train_data[rand_idx], (tuple, list)) else train_data[rand_idx][0]
|
||||
wav = ap.load_wav(wav_path)
|
||||
ground_mel = ap.melspectrogram(wav)
|
||||
sample_wav = model.generate(ground_mel,
|
||||
CONFIG.batched,
|
||||
CONFIG.target_samples,
|
||||
CONFIG.overlap_samples,
|
||||
c.batched,
|
||||
c.target_samples,
|
||||
c.overlap_samples,
|
||||
use_cuda
|
||||
)
|
||||
predict_mel = ap.melspectrogram(sample_wav)
|
||||
|
||||
# compute spectrograms
|
||||
figures = {"train/ground_truth": plot_spectrogram(ground_mel.T),
|
||||
"train/prediction": plot_spectrogram(predict_mel.T),
|
||||
"train/prediction": plot_spectrogram(predict_mel.T)
|
||||
}
|
||||
tb_logger.tb_train_figures(global_step, figures)
|
||||
|
||||
# Sample audio
|
||||
tb_logger.tb_train_audios(
|
||||
global_step, {
|
||||
"train/audio": sample_wav}, CONFIG.audio["sample_rate"]
|
||||
"train/audio": sample_wav}, c.audio["sample_rate"]
|
||||
)
|
||||
|
||||
tb_logger.tb_train_figures(global_step, figures)
|
||||
end_time = time.time()
|
||||
|
||||
# print epoch stats
|
||||
|
@ -259,34 +258,35 @@ def evaluate(model, criterion, ap, global_step, epoch):
|
|||
keep_avg.update_values(update_eval_values)
|
||||
|
||||
# print eval stats
|
||||
if CONFIG.print_eval:
|
||||
if c.print_eval:
|
||||
c_logger.print_eval_step(
|
||||
num_iter, loss_dict, keep_avg.avg_values)
|
||||
|
||||
if epoch % CONFIG.test_every_epochs == 0 and epoch != 0:
|
||||
# synthesize a part of data
|
||||
wav_path = eval_data[random.randrange(0, len(eval_data))][0]
|
||||
if epoch % c.test_every_epochs == 0 and epoch != 0:
|
||||
# synthesize a full voice
|
||||
rand_idx = random.randrange(0, len(eval_data))
|
||||
wav_path = eval_data[rand_idx] if not isinstance(
|
||||
eval_data[rand_idx], (tuple, list)) else eval_data[rand_idx][0]
|
||||
wav = ap.load_wav(wav_path)
|
||||
ground_mel = ap.melspectrogram(wav[:22000])
|
||||
ground_mel = ap.melspectrogram(wav)
|
||||
sample_wav = model.generate(ground_mel,
|
||||
CONFIG.batched,
|
||||
CONFIG.target_samples,
|
||||
CONFIG.overlap_samples,
|
||||
c.batched,
|
||||
c.target_samples,
|
||||
c.overlap_samples,
|
||||
use_cuda
|
||||
)
|
||||
predict_mel = ap.melspectrogram(sample_wav)
|
||||
|
||||
# compute spectrograms
|
||||
figures = {"eval/ground_truth": plot_spectrogram(ground_mel.T),
|
||||
"eval/prediction": plot_spectrogram(predict_mel.T),
|
||||
}
|
||||
|
||||
# Sample audio
|
||||
tb_logger.tb_eval_audios(
|
||||
global_step, {
|
||||
"eval/audio": sample_wav}, CONFIG.audio["sample_rate"]
|
||||
"eval/audio": sample_wav}, c.audio["sample_rate"]
|
||||
)
|
||||
|
||||
# compute spectrograms
|
||||
figures = {"eval/ground_truth": plot_spectrogram(ground_mel.T),
|
||||
"eval/prediction": plot_spectrogram(predict_mel.T)
|
||||
}
|
||||
tb_logger.tb_eval_figures(global_step, figures)
|
||||
|
||||
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
|
||||
|
@ -299,53 +299,62 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
global train_data, eval_data
|
||||
|
||||
# setup audio processor
|
||||
ap = AudioProcessor(**CONFIG.audio)
|
||||
ap = AudioProcessor(**c.audio)
|
||||
|
||||
print(f" > Loading wavs from: {CONFIG.data_path}")
|
||||
if CONFIG.feature_path is not None:
|
||||
print(f" > Loading features from: {CONFIG.feature_path}")
|
||||
# print(f" > Loading wavs from: {c.data_path}")
|
||||
# if c.feature_path is not None:
|
||||
# print(f" > Loading features from: {c.feature_path}")
|
||||
# eval_data, train_data = load_wav_feat_data(
|
||||
# c.data_path, c.feature_path, c.eval_split_size
|
||||
# )
|
||||
# else:
|
||||
# mel_feat_path = os.path.join(OUT_PATH, "mel")
|
||||
# feat_data = find_feat_files(mel_feat_path)
|
||||
# if feat_data:
|
||||
# print(f" > Loading features from: {mel_feat_path}")
|
||||
# eval_data, train_data = load_wav_feat_data(
|
||||
# c.data_path, mel_feat_path, c.eval_split_size
|
||||
# )
|
||||
# else:
|
||||
# print(" > No feature data found. Preprocessing...")
|
||||
# # preprocessing feature data from given wav files
|
||||
# preprocess_wav_files(OUT_PATH, CONFIG, ap)
|
||||
# eval_data, train_data = load_wav_feat_data(
|
||||
# c.data_path, mel_feat_path, c.eval_split_size
|
||||
# )
|
||||
|
||||
print(f" > Loading wavs from: {c.data_path}")
|
||||
if c.feature_path is not None:
|
||||
print(f" > Loading features from: {c.feature_path}")
|
||||
eval_data, train_data = load_wav_feat_data(
|
||||
CONFIG.data_path, CONFIG.feature_path, CONFIG.eval_split_size
|
||||
)
|
||||
c.data_path, c.feature_path, c.eval_split_size)
|
||||
else:
|
||||
mel_feat_path = os.path.join(OUT_PATH, "mel")
|
||||
feat_data = find_feat_files(mel_feat_path)
|
||||
if feat_data:
|
||||
print(f" > Loading features from: {mel_feat_path}")
|
||||
eval_data, train_data = load_wav_feat_data(
|
||||
CONFIG.data_path, mel_feat_path, CONFIG.eval_split_size
|
||||
)
|
||||
else:
|
||||
print(" > No feature data found. Preprocessing...")
|
||||
# preprocessing feature data from given wav files
|
||||
preprocess_wav_files(OUT_PATH, CONFIG, ap)
|
||||
eval_data, train_data = load_wav_feat_data(
|
||||
CONFIG.data_path, mel_feat_path, CONFIG.eval_split_size
|
||||
)
|
||||
eval_data, train_data = load_wav_data(
|
||||
c.data_path, c.eval_split_size)
|
||||
# setup model
|
||||
model_wavernn = setup_wavernn(CONFIG)
|
||||
model_wavernn = setup_wavernn(c)
|
||||
|
||||
# define train functions
|
||||
if CONFIG.mode == "mold":
|
||||
if c.mode == "mold":
|
||||
criterion = discretized_mix_logistic_loss
|
||||
elif CONFIG.mode == "gauss":
|
||||
elif c.mode == "gauss":
|
||||
criterion = gaussian_loss
|
||||
elif isinstance(CONFIG.mode, int):
|
||||
elif isinstance(c.mode, int):
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
|
||||
if use_cuda:
|
||||
model_wavernn.cuda()
|
||||
if isinstance(CONFIG.mode, int):
|
||||
if isinstance(c.mode, int):
|
||||
criterion.cuda()
|
||||
|
||||
optimizer = RAdam(model_wavernn.parameters(), lr=CONFIG.lr, weight_decay=0)
|
||||
optimizer = RAdam(model_wavernn.parameters(), lr=c.lr, weight_decay=0)
|
||||
|
||||
scheduler = None
|
||||
if "lr_scheduler" in CONFIG:
|
||||
scheduler = getattr(torch.optim.lr_scheduler, CONFIG.lr_scheduler)
|
||||
scheduler = scheduler(optimizer, **CONFIG.lr_scheduler_params)
|
||||
if "lr_scheduler" in c:
|
||||
scheduler = getattr(torch.optim.lr_scheduler, c.lr_scheduler)
|
||||
scheduler = scheduler(optimizer, **c.lr_scheduler_params)
|
||||
# slow start for the first 5 epochs
|
||||
# lr_lambda = lambda epoch: min(epoch / CONFIG.warmup_steps, 1)
|
||||
# lr_lambda = lambda epoch: min(epoch / c.warmup_steps, 1)
|
||||
# scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
|
||||
|
||||
# restore any checkpoint
|
||||
|
@ -366,7 +375,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
# retore only matching layers.
|
||||
print(" > Partial model initialization...")
|
||||
model_dict = model_wavernn.state_dict()
|
||||
model_dict = set_init_dict(model_dict, checkpoint["model"], CONFIG)
|
||||
model_dict = set_init_dict(model_dict, checkpoint["model"], c)
|
||||
model_wavernn.load_state_dict(model_dict)
|
||||
|
||||
print(" > Model restored from step %d" %
|
||||
|
@ -386,11 +395,10 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
best_loss = float("inf")
|
||||
|
||||
global_step = args.restore_step
|
||||
for epoch in range(0, CONFIG.epochs):
|
||||
c_logger.print_epoch_start(epoch, CONFIG.epochs)
|
||||
_, global_step = train(
|
||||
model_wavernn, optimizer, criterion, scheduler, ap, global_step, epoch
|
||||
)
|
||||
for epoch in range(0, c.epochs):
|
||||
c_logger.print_epoch_start(epoch, c.epochs)
|
||||
_, global_step = train(model_wavernn, optimizer,
|
||||
criterion, scheduler, ap, global_step, epoch)
|
||||
eval_avg_loss_dict = evaluate(
|
||||
model_wavernn, criterion, ap, global_step, epoch)
|
||||
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
|
||||
|
@ -462,14 +470,14 @@ if __name__ == "__main__":
|
|||
print(f" > Training continues for {args.restore_path}")
|
||||
|
||||
# setup output paths and read configs
|
||||
CONFIG = load_config(args.config_path)
|
||||
c = load_config(args.config_path)
|
||||
# check_config(c)
|
||||
_ = os.path.dirname(os.path.realpath(__file__))
|
||||
|
||||
OUT_PATH = args.continue_path
|
||||
if args.continue_path == "":
|
||||
OUT_PATH = create_experiment_folder(
|
||||
CONFIG.output_path, CONFIG.run_name, args.debug
|
||||
c.output_path, c.run_name, args.debug
|
||||
)
|
||||
|
||||
AUDIO_PATH = os.path.join(OUT_PATH, "test_audios")
|
||||
|
@ -483,7 +491,7 @@ if __name__ == "__main__":
|
|||
new_fields["restore_path"] = args.restore_path
|
||||
new_fields["github_branch"] = get_git_branch()
|
||||
copy_config_file(
|
||||
args.config_path, os.path.join(OUT_PATH, "config.json"), new_fields
|
||||
args.config_path, os.path.join(OUT_PATH, "c.json"), new_fields
|
||||
)
|
||||
os.chmod(AUDIO_PATH, 0o775)
|
||||
os.chmod(OUT_PATH, 0o775)
|
||||
|
@ -492,8 +500,7 @@ if __name__ == "__main__":
|
|||
tb_logger = TensorboardLogger(LOG_DIR, model_name="VOCODER")
|
||||
|
||||
# write model desc to tensorboard
|
||||
tb_logger.tb_add_text("model-description",
|
||||
CONFIG["run_description"], 0)
|
||||
tb_logger.tb_add_text("model-description", c["run_description"], 0)
|
||||
|
||||
try:
|
||||
main(args)
|
||||
|
|
|
@ -2,93 +2,96 @@
|
|||
"run_name": "wavernn_test",
|
||||
"run_description": "wavernn_test training",
|
||||
|
||||
// AUDIO PARAMETERS
|
||||
"audio":{
|
||||
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"win_length": 1024, // stft window length in ms.
|
||||
"hop_length": 256, // stft window hop-lengh in ms.
|
||||
// AUDIO PARAMETERS
|
||||
"audio": {
|
||||
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"win_length": 1024, // stft window length in ms.
|
||||
"hop_length": 256, // stft window hop-lengh in ms.
|
||||
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
||||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||
|
||||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||
// Audio processing parameters
|
||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
|
||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
// Silence trimming
|
||||
"do_trim_silence": false,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
||||
|
||||
"do_trim_silence": false, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
||||
// MelSpectrogram parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"mel_fmin": 40.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"spec_gain": 20.0, // scaler value appplied after log transform of spectrogram.
|
||||
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"mel_fmin": 40.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"spec_gain": 20.0, // scaler value appplied after log transform of spectrogram.
|
||||
// Normalization parameters
|
||||
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||||
"min_level_db": -100, // lower bound for normalization
|
||||
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||||
"min_level_db": -100, // lower bound for normalization
|
||||
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||||
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
||||
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
|
||||
},
|
||||
|
||||
// Generating / Synthesizing
|
||||
// Generating / Synthesizing
|
||||
"batched": true,
|
||||
"target_samples": 11000, // target number of samples to be generated in each batch entry
|
||||
"overlap_samples": 550, // number of samples for crossfading between batches
|
||||
|
||||
"target_samples": 11000, // target number of samples to be generated in each batch entry
|
||||
"overlap_samples": 550, // number of samples for crossfading between batches
|
||||
// DISTRIBUTED TRAINING
|
||||
// "distributed":{
|
||||
// "backend": "nccl",
|
||||
// "url": "tcp:\/\/localhost:54321"
|
||||
// },
|
||||
|
||||
// MODEL PARAMETERS
|
||||
"use_aux_net": true,
|
||||
"use_upsample_net": true,
|
||||
"upsample_factors": [4, 8, 8], // this needs to correctly factorise hop_length
|
||||
"seq_len": 1280, // has to be devideable by hop_length
|
||||
"mode": "mold", // mold [string], gauss [string], bits [int]
|
||||
"mulaw": false, // apply mulaw if mode is bits
|
||||
"padding": 2, // pad the input for resnet to see wider input length
|
||||
// MODEL MODE
|
||||
"mode": 10, // mold [string], gauss [string], bits [int]
|
||||
"mulaw": true, // apply mulaw if mode is bits
|
||||
|
||||
// DATASET
|
||||
//"use_gta": true, // use computed gta features from the tts model
|
||||
"data_path": "path/to/wav/files", // path containing training wav files
|
||||
"feature_path": null, // path containing computed features from wav files if null compute them
|
||||
// MODEL PARAMETERS
|
||||
"wavernn_model_params": {
|
||||
"rnn_dims": 512,
|
||||
"fc_dims": 512,
|
||||
"compute_dims": 128,
|
||||
"res_out_dims": 128,
|
||||
"num_res_blocks": 10,
|
||||
"use_aux_net": true,
|
||||
"use_upsample_net": true,
|
||||
"upsample_factors": [4, 8, 8] // this needs to correctly factorise hop_length
|
||||
},
|
||||
|
||||
// TRAINING
|
||||
"batch_size": 64, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
||||
"epochs": 10000, // total number of epochs to train.
|
||||
// DATASET
|
||||
//"use_gta": true, // use computed gta features from the tts model
|
||||
"data_path": "/media/alexander/LinuxFS/SpeechData/GothicSpeech/NPC_Speech", // path containing training wav files
|
||||
"feature_path": null, // path containing computed features from wav files if null compute them
|
||||
"seq_len": 1280, // has to be devideable by hop_length
|
||||
"padding": 2, // pad the input for resnet to see wider input length
|
||||
|
||||
// VALIDATION
|
||||
// TRAINING
|
||||
"batch_size": 64, // Batch size for training.
|
||||
"epochs": 10000, // total number of epochs to train.
|
||||
|
||||
// VALIDATION
|
||||
"run_eval": true,
|
||||
"test_every_epochs": 10, // Test after set number of epochs (Test every 20 epochs for example)
|
||||
"test_every_epochs": 10, // Test after set number of epochs (Test every 10 epochs for example)
|
||||
|
||||
// OPTIMIZER
|
||||
"grad_clip": 4, // apply gradient clipping if > 0
|
||||
"lr_scheduler": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
|
||||
// OPTIMIZER
|
||||
"grad_clip": 4, // apply gradient clipping if > 0
|
||||
"lr_scheduler": "MultiStepLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
|
||||
"lr_scheduler_params": {
|
||||
"gamma": 0.5,
|
||||
"milestones": [200000, 400000, 600000]
|
||||
},
|
||||
"lr": 1e-4, // initial learning rate
|
||||
"lr": 1e-4, // initial learning rate
|
||||
|
||||
// TENSORBOARD and LOGGING
|
||||
"print_step": 25, // Number of steps to log traning on console.
|
||||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
// TENSORBOARD and LOGGING
|
||||
"print_step": 25, // Number of steps to log traning on console.
|
||||
"print_eval": false, // If True, it prints loss values for each step in eval run.
|
||||
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
// DATA LOADING
|
||||
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"eval_split_size": 50, // number of samples for testing
|
||||
// DATA LOADING
|
||||
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"eval_split_size": 50, // number of samples for testing
|
||||
|
||||
// PATHS
|
||||
// PATHS
|
||||
"output_path": "output/training/path"
|
||||
}
|
||||
|
||||
|
|
|
@ -1,11 +1,13 @@
|
|||
import torch
|
||||
import numpy as np
|
||||
from torch.utils.data import Dataset
|
||||
from multiprocessing import Manager
|
||||
|
||||
|
||||
class WaveRNNDataset(Dataset):
|
||||
"""
|
||||
WaveRNN Dataset searchs for all the wav files under root path.
|
||||
WaveRNN Dataset searchs for all the wav files under root path
|
||||
and converts them to acoustic features on the fly.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
@ -15,16 +17,19 @@ class WaveRNNDataset(Dataset):
|
|||
hop_len,
|
||||
pad,
|
||||
mode,
|
||||
mulaw,
|
||||
is_training=True,
|
||||
verbose=False,
|
||||
):
|
||||
|
||||
self.ap = ap
|
||||
self.compute_feat = not isinstance(items[0], (tuple, list))
|
||||
self.item_list = items
|
||||
self.seq_len = seq_len
|
||||
self.hop_len = hop_len
|
||||
self.pad = pad
|
||||
self.mode = mode
|
||||
self.mulaw = mulaw
|
||||
self.is_training = is_training
|
||||
self.verbose = verbose
|
||||
|
||||
|
@ -36,22 +41,47 @@ class WaveRNNDataset(Dataset):
|
|||
return item
|
||||
|
||||
def load_item(self, index):
|
||||
wavpath, feat_path = self.item_list[index]
|
||||
m = np.load(feat_path.replace("/quant/", "/mel/"))
|
||||
# x = self.wav_cache[index]
|
||||
if m.shape[-1] < 5:
|
||||
print(" [!] Instance is too short! : {}".format(wavpath))
|
||||
self.item_list[index] = self.item_list[index + 1]
|
||||
feat_path = self.item_list[index]
|
||||
m = np.load(feat_path.replace("/quant/", "/mel/"))
|
||||
if self.mode in ["gauss", "mold"]:
|
||||
# x = np.load(feat_path.replace("/mel/", "/quant/"))
|
||||
x = self.ap.load_wav(wavpath)
|
||||
elif isinstance(self.mode, int):
|
||||
x = np.load(feat_path.replace("/mel/", "/quant/"))
|
||||
"""
|
||||
load (audio, feat) couple if feature_path is set
|
||||
else compute it on the fly
|
||||
"""
|
||||
if self.compute_feat:
|
||||
|
||||
wavpath = self.item_list[index]
|
||||
audio = self.ap.load_wav(wavpath)
|
||||
mel = self.ap.melspectrogram(audio)
|
||||
|
||||
if mel.shape[-1] < 5:
|
||||
print(" [!] Instance is too short! : {}".format(wavpath))
|
||||
self.item_list[index] = self.item_list[index + 1]
|
||||
audio = self.ap.load_wav(wavpath)
|
||||
mel = self.ap.melspectrogram(audio)
|
||||
if self.mode in ["gauss", "mold"]:
|
||||
x_input = audio
|
||||
elif isinstance(self.mode, int):
|
||||
x_input = (self.ap.mulaw_encode(audio, qc=self.mode)
|
||||
if self.mulaw else self.ap.quantize(audio, bits=self.mode))
|
||||
else:
|
||||
raise RuntimeError("Unknown dataset mode - ", self.mode)
|
||||
|
||||
else:
|
||||
raise RuntimeError("Unknown dataset mode - ", self.mode)
|
||||
return m, x
|
||||
|
||||
wavpath, feat_path = self.item_list[index]
|
||||
mel = np.load(feat_path.replace("/quant/", "/mel/"))
|
||||
|
||||
if mel.shape[-1] < 5:
|
||||
print(" [!] Instance is too short! : {}".format(wavpath))
|
||||
self.item_list[index] = self.item_list[index + 1]
|
||||
feat_path = self.item_list[index]
|
||||
mel = np.load(feat_path.replace("/quant/", "/mel/"))
|
||||
if self.mode in ["gauss", "mold"]:
|
||||
x_input = self.ap.load_wav(wavpath)
|
||||
elif isinstance(self.mode, int):
|
||||
x_input = np.load(feat_path.replace("/mel/", "/quant/"))
|
||||
else:
|
||||
raise RuntimeError("Unknown dataset mode - ", self.mode)
|
||||
|
||||
return mel, x_input
|
||||
|
||||
def collate(self, batch):
|
||||
mel_win = self.seq_len // self.hop_len + 2 * self.pad
|
||||
|
@ -79,10 +109,8 @@ class WaveRNNDataset(Dataset):
|
|||
elif isinstance(self.mode, int):
|
||||
coarse = np.stack(coarse).astype(np.int64)
|
||||
coarse = torch.LongTensor(coarse)
|
||||
x_input = (
|
||||
2 * coarse[:, : self.seq_len].float() /
|
||||
(2 ** self.mode - 1.0) - 1.0
|
||||
)
|
||||
x_input = (2 * coarse[:, : self.seq_len].float() /
|
||||
(2 ** self.mode - 1.0) - 1.0)
|
||||
y_coarse = coarse[:, 1:]
|
||||
mels = torch.FloatTensor(mels)
|
||||
return x_input, mels, y_coarse
|
||||
|
|
|
@ -36,14 +36,14 @@ class ResBlock(nn.Module):
|
|||
|
||||
|
||||
class MelResNet(nn.Module):
|
||||
def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad):
|
||||
def __init__(self, num_res_blocks, in_dims, compute_dims, res_out_dims, pad):
|
||||
super().__init__()
|
||||
k_size = pad * 2 + 1
|
||||
self.conv_in = nn.Conv1d(
|
||||
in_dims, compute_dims, kernel_size=k_size, bias=False)
|
||||
self.batch_norm = nn.BatchNorm1d(compute_dims)
|
||||
self.layers = nn.ModuleList()
|
||||
for _ in range(res_blocks):
|
||||
for _ in range(num_res_blocks):
|
||||
self.layers.append(ResBlock(compute_dims))
|
||||
self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)
|
||||
|
||||
|
@ -76,7 +76,7 @@ class UpsampleNetwork(nn.Module):
|
|||
feat_dims,
|
||||
upsample_scales,
|
||||
compute_dims,
|
||||
res_blocks,
|
||||
num_res_blocks,
|
||||
res_out_dims,
|
||||
pad,
|
||||
use_aux_net,
|
||||
|
@ -87,7 +87,7 @@ class UpsampleNetwork(nn.Module):
|
|||
self.use_aux_net = use_aux_net
|
||||
if use_aux_net:
|
||||
self.resnet = MelResNet(
|
||||
res_blocks, feat_dims, compute_dims, res_out_dims, pad
|
||||
num_res_blocks, feat_dims, compute_dims, res_out_dims, pad
|
||||
)
|
||||
self.resnet_stretch = Stretch2d(self.total_scale, 1)
|
||||
self.up_layers = nn.ModuleList()
|
||||
|
@ -118,14 +118,14 @@ class UpsampleNetwork(nn.Module):
|
|||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(
|
||||
self, scale, pad, res_blocks, feat_dims, compute_dims, res_out_dims, use_aux_net
|
||||
self, scale, pad, num_res_blocks, feat_dims, compute_dims, res_out_dims, use_aux_net
|
||||
):
|
||||
super().__init__()
|
||||
self.scale = scale
|
||||
self.pad = pad
|
||||
self.indent = pad * scale
|
||||
self.use_aux_net = use_aux_net
|
||||
self.resnet = MelResNet(res_blocks, feat_dims,
|
||||
self.resnet = MelResNet(num_res_blocks, feat_dims,
|
||||
compute_dims, res_out_dims, pad)
|
||||
|
||||
def forward(self, m):
|
||||
|
@ -147,23 +147,22 @@ class Upsample(nn.Module):
|
|||
|
||||
|
||||
class WaveRNN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
rnn_dims,
|
||||
fc_dims,
|
||||
mode,
|
||||
mulaw,
|
||||
pad,
|
||||
use_aux_net,
|
||||
use_upsample_net,
|
||||
upsample_factors,
|
||||
feat_dims,
|
||||
compute_dims,
|
||||
res_out_dims,
|
||||
res_blocks,
|
||||
hop_length,
|
||||
sample_rate,
|
||||
):
|
||||
def __init__(self,
|
||||
rnn_dims,
|
||||
fc_dims,
|
||||
mode,
|
||||
mulaw,
|
||||
pad,
|
||||
use_aux_net,
|
||||
use_upsample_net,
|
||||
upsample_factors,
|
||||
feat_dims,
|
||||
compute_dims,
|
||||
res_out_dims,
|
||||
num_res_blocks,
|
||||
hop_length,
|
||||
sample_rate,
|
||||
):
|
||||
super().__init__()
|
||||
self.mode = mode
|
||||
self.mulaw = mulaw
|
||||
|
@ -177,7 +176,7 @@ class WaveRNN(nn.Module):
|
|||
elif self.mode == "gauss":
|
||||
self.n_classes = 2
|
||||
else:
|
||||
raise RuntimeError(" > Unknown training mode")
|
||||
raise RuntimeError("Unknown model mode value - ", self.mode)
|
||||
|
||||
self.rnn_dims = rnn_dims
|
||||
self.aux_dims = res_out_dims // 4
|
||||
|
@ -192,7 +191,7 @@ class WaveRNN(nn.Module):
|
|||
feat_dims,
|
||||
upsample_factors,
|
||||
compute_dims,
|
||||
res_blocks,
|
||||
num_res_blocks,
|
||||
res_out_dims,
|
||||
pad,
|
||||
use_aux_net,
|
||||
|
@ -201,7 +200,7 @@ class WaveRNN(nn.Module):
|
|||
self.upsample = Upsample(
|
||||
hop_length,
|
||||
pad,
|
||||
res_blocks,
|
||||
num_res_blocks,
|
||||
feat_dims,
|
||||
compute_dims,
|
||||
res_out_dims,
|
||||
|
@ -260,7 +259,7 @@ class WaveRNN(nn.Module):
|
|||
x = F.relu(self.fc2(x))
|
||||
return self.fc3(x)
|
||||
|
||||
def generate(self, mels, batched, target, overlap, use_cuda):
|
||||
def generate(self, mels, batched, target, overlap, use_cuda=False):
|
||||
|
||||
self.eval()
|
||||
device = 'cuda' if use_cuda else 'cpu'
|
||||
|
@ -360,7 +359,9 @@ class WaveRNN(nn.Module):
|
|||
# Fade-out at the end to avoid signal cutting out suddenly
|
||||
fade_out = np.linspace(1, 0, 20 * self.hop_length)
|
||||
output = output[:wave_len]
|
||||
output[-20 * self.hop_length:] *= fade_out
|
||||
|
||||
if wave_len > len(fade_out):
|
||||
output[-20 * self.hop_length:] *= fade_out
|
||||
|
||||
self.train()
|
||||
return output
|
||||
|
@ -405,7 +406,8 @@ class WaveRNN(nn.Module):
|
|||
padding = target + 2 * overlap - remaining
|
||||
x = self.pad_tensor(x, padding, side="after")
|
||||
|
||||
folded = torch.zeros(num_folds, target + 2 * overlap, features).to(x.device)
|
||||
folded = torch.zeros(num_folds, target + 2 *
|
||||
overlap, features).to(x.device)
|
||||
|
||||
# Get the values for the folded tensor
|
||||
for i in range(num_folds):
|
||||
|
|
Loading…
Reference in New Issue