Update WaveGrad

pull/847/head
Eren Gölge 2021-09-30 14:21:25 +00:00
parent fd95926009
commit 3d5205d66f
2 changed files with 35 additions and 11 deletions

View File

@ -58,7 +58,7 @@ class Wavegrad(BaseVocoder):
# pylint: disable=dangerous-default-value
def __init__(self, config: Coqpit):
super().__init__()
super().__init__(config)
self.config = config
self.use_weight_norm = config.model_params.use_weight_norm
self.hop_len = np.prod(config.model_params.upsample_factors)
@ -258,21 +258,22 @@ class Wavegrad(BaseVocoder):
return {"model_output": noise_hat}, {"loss": loss}
def train_log( # pylint: disable=no-self-use
self, ap: AudioProcessor, batch: Dict, outputs: Dict # pylint: disable=unused-argument
self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument
) -> Tuple[Dict, np.ndarray]:
return None, None
pass
@torch.no_grad()
def eval_step(self, batch: Dict, criterion: nn.Module) -> Tuple[Dict, Dict]:
return self.train_step(batch, criterion)
def eval_log( # pylint: disable=no-self-use
self, ap: AudioProcessor, batch: Dict, outputs: Dict # pylint: disable=unused-argument
) -> Tuple[Dict, np.ndarray]:
return None, None
self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument
) -> None:
pass
def test_run(self, ap: AudioProcessor, samples: List[Dict], ouputs: Dict): # pylint: disable=unused-argument
def test_run(self, assets: Dict, samples: List[Dict], outputs: Dict): # pylint: disable=unused-argument
# setup noise schedule and inference
ap = assets["audio_processor"]
noise_schedule = self.config["test_noise_schedule"]
betas = np.linspace(noise_schedule["min_val"], noise_schedule["max_val"], noise_schedule["num_steps"])
self.compute_noise_level(betas)
@ -307,8 +308,9 @@ class Wavegrad(BaseVocoder):
return {"input": m, "waveform": y}
def get_data_loader(
self, config: Coqpit, ap: AudioProcessor, is_eval: True, data_items: List, verbose: bool, num_gpus: int
self, config: Coqpit, assets: Dict, is_eval: True, data_items: List, verbose: bool, num_gpus: int
):
ap = assets["audio_processor"]
dataset = WaveGradDataset(
ap=ap,
items=data_items,

View File

@ -1,7 +1,11 @@
import os
from TTS.trainer import Trainer, TrainingArgs, init_training
from TTS.trainer import Trainer, TrainingArgs
from TTS.utils.audio import AudioProcessor
from TTS.vocoder.configs import WavegradConfig
from TTS.vocoder.models.wavegrad import Wavegrad
from TTS.vocoder.datasets.preprocess import load_wav_data
output_path = os.path.dirname(os.path.abspath(__file__))
config = WavegradConfig(
@ -22,6 +26,24 @@ config = WavegradConfig(
data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"),
output_path=output_path,
)
args, config, output_path, _, c_logger, dashboard_logger = init_training(TrainingArgs(), config)
trainer = Trainer(args, config, output_path, c_logger, dashboard_logger)
# init audio processor
ap = AudioProcessor(**config.audio.to_dict())
# load training samples
eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size)
# init model
model = Wavegrad(config)
# init the trainer and 🚀
trainer = Trainer(
TrainingArgs(),
config,
output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
training_assets={"audio_processor": ap},
)
trainer.fit()