1) Add hifigan json files

2) Rename MPD disc
3) Re-format remove weight norm generator
pull/422/head
rishikksh20 2021-02-23 22:42:12 +05:30 committed by Eren Gölge
parent 7b7c5d635f
commit 39b5845810
4 changed files with 174 additions and 24 deletions

View File

@ -0,0 +1,140 @@
{
"run_name": "hifigan",
"run_description": "hifigan mean-var scaling",
// AUDIO PARAMETERS
"audio":{
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
"win_length": 1024, // stft window length in ms.
"hop_length": 256, // stft window hop-lengh in ms.
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
// Audio processing parameters
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"ref_level_db": 0, // reference level db, theoretically 20db is the sound of air.
// Silence trimming
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
// MelSpectrogram parameters
"num_mels": 80, // size of the mel spec frame.
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
"spec_gain": 1.0, // scaler value appplied after log transform of spectrogram.
// Normalization parameters
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
"min_level_db": -100, // lower bound for normalization
"symmetric_norm": true, // move normalization to range [-1, 1]
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm": true, // clip normalized values into the range.
"stats_path": "/home/erogol/Data/libritts/LibriTTS/scale_stats.npy" // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
},
// DISTRIBUTED TRAINING
"distributed":{
"backend": "nccl",
"url": "tcp:\/\/localhost:54324"
},
// MODEL PARAMETERS
"use_pqmf": false,
// LOSS PARAMETERS
"use_stft_loss": false,
"use_subband_stft_loss": false,
"use_mse_gan_loss": true,
"use_hinge_gan_loss": false,
"use_feat_match_loss": false, // use only with melgan discriminators
// loss weights
"stft_loss_weight": 0.5,
"subband_stft_loss_weight": 0.5,
"mse_G_loss_weight": 2.5,
"hinge_G_loss_weight": 2.5,
"feat_match_loss_weight": 25,
// multiscale stft loss parameters
"stft_loss_params": {
"n_ffts": [1024, 2048, 512],
"hop_lengths": [120, 240, 50],
"win_lengths": [600, 1200, 240]
},
"target_loss": "avg_G_loss", // loss value to pick the best model to save after each epoch
// DISCRIMINATOR
"discriminator_model": "hifigan_mpd_discriminator",
"discriminator_model_params":{
"peroids": [2, 3, 5, 7, 11],
"base_channels": 16,
"max_channels":512,
"downsample_factors":[4, 4, 4]
},
"steps_to_start_discriminator": 1, // steps required to start GAN trainining.1
// GENERATOR
"generator_model": "hifigan_generator",
"generator_model_params": {
"upsample_factors":[8,8,2,2],
"upsample_kernel_sizes": [16,16,4,4],
"upsample_initial_channel": 512,
"resblock_kernel_sizes": [3,7,11],
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]]
},
// DATASET
"data_path": "/home/erogol/Data/libritts/LibriTTS/train-clean-360/",
"feature_path": null,
"seq_len": 16384,
"pad_short": 2000,
"conv_pad": 0,
"use_noise_augment": false,
"use_cache": true,
"reinit_layers": [], // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
// TRAINING
"batch_size": 48, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
// VALIDATION
"run_eval": true,
"test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time.
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
// OPTIMIZER
"epochs": 10000, // total number of epochs to train.
"wd": 0.0, // Weight decay weight.
"gen_clip_grad": -1, // Generator gradient clipping threshold. Apply gradient clipping if > 0
"disc_clip_grad": -1, // Discriminator gradient clipping threshold.
"lr_scheduler_gen": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"lr_scheduler_gen_params": {
"gamma": 0.999
},
"lr_scheduler_disc": "ExponentialLR", // one of the schedulers from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
"lr_scheduler_disc_params": {
"gamma": 0.999
},
"lr_gen": 0.0002, // Initial learning rate. If Noam decay is active, maximum learning rate.
"lr_disc": 0.0002,
// TENSORBOARD and LOGGING
"print_step": 25, // Number of steps to log traning on console.
"print_eval": false, // If True, it prints loss values for each step in eval run.
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers": 4, // number of evaluation data loader processes.
"eval_split_size": 10,
// PATHS
"output_path": "/home/erogol/Models/"
}

View File

@ -24,15 +24,13 @@ class ResStack(nn.Module):
return x1 + x2 return x1 + x2
def remove_weight_norm(self): def remove_weight_norm(self):
# nn.utils.remove_weight_norm(self.resstack[2])
# nn.utils.remove_weight_norm(self.resstack[4])
for idx, layer in enumerate(self.resstack):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.shortcut) nn.utils.remove_weight_norm(self.shortcut)
nn.utils.remove_weight_norm(self.resstack[2])
nn.utils.remove_weight_norm(self.resstack[5])
nn.utils.remove_weight_norm(self.resstack[8])
nn.utils.remove_weight_norm(self.resstack[11])
nn.utils.remove_weight_norm(self.resstack[14])
nn.utils.remove_weight_norm(self.resstack[17])
class MRF(nn.Module): class MRF(nn.Module):
def __init__(self, kernels, channel, dilations = [[1,1], [3,1], [5,1]]): def __init__(self, kernels, channel, dilations = [[1,1], [3,1], [5,1]]):

View File

@ -39,19 +39,9 @@ class Generator(nn.Module):
return out return out
def remove_weight_norm(self): def remove_weight_norm(self):
for idx, layer in enumerate(self.input): nn.utils.remove_weight_norm(self.input[1])
if len(layer.state_dict()) != 0: nn.utils.remove_weight_norm(self.output[2])
try:
nn.utils.remove_weight_norm(layer)
except:
layer.remove_weight_norm()
for idx, layer in enumerate(self.output):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except:
layer.remove_weight_norm()
for idx, layer in enumerate(self.generator): for idx, layer in enumerate(self.generator):
if len(layer.state_dict()) != 0: if len(layer.state_dict()) != 0:
try: try:

View File

@ -46,9 +46,20 @@ class PeriodDiscriminator(nn.Module):
return features[-1], features[:-1] return features[-1], features[:-1]
class HiFiDiscriminator(nn.Module): class MultiPeriodDiscriminator(nn.Module):
def __init__(self, periods=[2, 3, 5, 7, 11]): def __init__(self,
super(HiFiDiscriminator, self).__init__() periods=[2, 3, 5, 7, 11],
in_channels=1,
out_channels=1,
num_scales=3,
kernel_sizes=(5, 3),
base_channels=16,
max_channels=1024,
downsample_factors=(4, 4, 4),
pooling_kernel_size=4,
pooling_stride=2,
pooling_padding=1):
super(MultiPeriodDiscriminator, self).__init__()
self.discriminators = nn.ModuleList([ PeriodDiscriminator(periods[0]), self.discriminators = nn.ModuleList([ PeriodDiscriminator(periods[0]),
PeriodDiscriminator(periods[1]), PeriodDiscriminator(periods[1]),
PeriodDiscriminator(periods[2]), PeriodDiscriminator(periods[2]),
@ -56,7 +67,18 @@ class HiFiDiscriminator(nn.Module):
PeriodDiscriminator(periods[4]), PeriodDiscriminator(periods[4]),
]) ])
self.msd = MelganMultiscaleDiscriminator() self.msd = MelganMultiscaleDiscriminator(
in_channels=1,
out_channels=1,
num_scales=3,
kernel_sizes=(5, 3),
base_channels=16,
max_channels=1024,
downsample_factors=(4, 4, 4),
pooling_kernel_size=4,
pooling_stride=2,
pooling_padding=1
)
def forward(self, x): def forward(self, x):
scores, feats = self.msd(x) scores, feats = self.msd(x)