masked loss

pull/10/head
Eren Golge 2018-03-22 13:46:52 -07:00
parent 0f3b2ddd7b
commit 33937f54d0
4 changed files with 39 additions and 24 deletions

View File

@ -98,9 +98,6 @@ class LJSpeechDataset(Dataset):
mel = [self.ap.melspectrogram(w).astype('float32') for w in wav] mel = [self.ap.melspectrogram(w).astype('float32') for w in wav]
mel_lengths = [m.shape[1] for m in mel] mel_lengths = [m.shape[1] for m in mel]
# compute 'stop token' targets
stop_targets = [np.array([0.]*mel_len) for mel_len in mel_lengths]
# PAD sequences with largest length of the batch # PAD sequences with largest length of the batch
text = prepare_data(text).astype(np.int32) text = prepare_data(text).astype(np.int32)
wav = prepare_data(wav) wav = prepare_data(wav)
@ -111,9 +108,6 @@ class LJSpeechDataset(Dataset):
assert mel.shape[2] == linear.shape[2] assert mel.shape[2] == linear.shape[2]
timesteps = mel.shape[2] timesteps = mel.shape[2]
# PAD stop targets
stop_targets = prepare_stop_target(stop_targets, self.outputs_per_step)
# PAD with zeros that can be divided by outputs per step # PAD with zeros that can be divided by outputs per step
if (timesteps + 1) % self.outputs_per_step != 0: if (timesteps + 1) % self.outputs_per_step != 0:
pad_len = self.outputs_per_step - \ pad_len = self.outputs_per_step - \
@ -124,7 +118,16 @@ class LJSpeechDataset(Dataset):
linear = pad_per_step(linear, pad_len) linear = pad_per_step(linear, pad_len)
mel = pad_per_step(mel, pad_len) mel = pad_per_step(mel, pad_len)
# reshape mojo # update mel lengths
mel_lengths = [l+pad_len for l in mel_lengths]
# compute 'stop token' targets
stop_targets = [np.array([0.]*mel_len) for mel_len in mel_lengths]
# PAD stop targets
stop_targets = prepare_stop_target(stop_targets, self.outputs_per_step)
# B x T x D
linear = linear.transpose(0, 2, 1) linear = linear.transpose(0, 2, 1)
mel = mel.transpose(0, 2, 1) mel = mel.transpose(0, 2, 1)
@ -133,8 +136,9 @@ class LJSpeechDataset(Dataset):
text = torch.LongTensor(text) text = torch.LongTensor(text)
linear = torch.FloatTensor(linear) linear = torch.FloatTensor(linear)
mel = torch.FloatTensor(mel) mel = torch.FloatTensor(mel)
mel_lengths = torch.LongTensor(mel_lengths)
stop_targets = torch.FloatTensor(stop_targets) stop_targets = torch.FloatTensor(stop_targets)
return text, text_lenghts, linear, mel, stop_targets, item_idxs[0] return text, text_lenghts, linear, mel, mel_lengths, stop_targets, item_idxs[0]
raise TypeError(("batch must contain tensors, numbers, dicts or lists;\ raise TypeError(("batch must contain tensors, numbers, dicts or lists;\
found {}" found {}"

View File

@ -37,16 +37,12 @@ class DecoderTests(unittest.TestCase):
dummy_memory = T.autograd.Variable(T.rand(4, 120, 32)) dummy_memory = T.autograd.Variable(T.rand(4, 120, 32))
print(layer) print(layer)
output, alignment, stop_output = layer(dummy_input, dummy_memory) output, alignment = layer(dummy_input, dummy_memory)
print(output.shape) print(output.shape)
print(" > Stop ", stop_output.shape)
assert output.shape[0] == 4 assert output.shape[0] == 4
assert output.shape[1] == 120 / 5 assert output.shape[1] == 120 / 5
assert output.shape[2] == 32 * 5 assert output.shape[2] == 32 * 5
assert stop_output.shape[0] == 4
assert stop_output.shape[1] == 120 / 5
assert stop_output.shape[2] == 5
class EncoderTests(unittest.TestCase): class EncoderTests(unittest.TestCase):

View File

@ -43,8 +43,9 @@ class TestDataset(unittest.TestCase):
text_lengths = data[1] text_lengths = data[1]
linear_input = data[2] linear_input = data[2]
mel_input = data[3] mel_input = data[3]
stop_targets = data[4] mel_lengths = data[4]
item_idx = data[5] stop_target = data[5]
item_idx = data[6]
neg_values = text_input[text_input < 0] neg_values = text_input[text_input < 0]
check_count = len(neg_values) check_count = len(neg_values)
@ -82,8 +83,9 @@ class TestDataset(unittest.TestCase):
text_lengths = data[1] text_lengths = data[1]
linear_input = data[2] linear_input = data[2]
mel_input = data[3] mel_input = data[3]
stop_target = data[4] mel_lengths = data[4]
item_idx = data[5] stop_target = data[5]
item_idx = data[6]
# check the last time step to be zero padded # check the last time step to be zero padded
assert mel_input[0, -1].sum() == 0 assert mel_input[0, -1].sum() == 0
@ -92,6 +94,10 @@ class TestDataset(unittest.TestCase):
assert linear_input[0, -2].sum() != 0 assert linear_input[0, -2].sum() != 0
assert stop_target[0, -1] == 1 assert stop_target[0, -1] == 1
assert stop_target.sum() == 1 assert stop_target.sum() == 1
assert len(mel_lengths.shape) == 1
print(mel_lengths)
print(mel_input)
assert mel_lengths[0] == mel_input[0].shape[0]

View File

@ -26,6 +26,7 @@ from utils.model import get_param_size
from utils.visual import plot_alignment, plot_spectrogram from utils.visual import plot_alignment, plot_spectrogram
from datasets.LJSpeech import LJSpeechDataset from datasets.LJSpeech import LJSpeechDataset
from models.tacotron import Tacotron from models.tacotron import Tacotron
from losses import
use_cuda = torch.cuda.is_available() use_cuda = torch.cuda.is_available()
@ -80,6 +81,7 @@ def train(model, criterion, data_loader, optimizer, epoch):
text_lengths = data[1] text_lengths = data[1]
linear_input = data[2] linear_input = data[2]
mel_input = data[3] mel_input = data[3]
mel_lengths = data[4]
current_step = num_iter + args.restore_step + epoch * len(data_loader) + 1 current_step = num_iter + args.restore_step + epoch * len(data_loader) + 1
@ -93,6 +95,7 @@ def train(model, criterion, data_loader, optimizer, epoch):
# convert inputs to variables # convert inputs to variables
text_input_var = Variable(text_input) text_input_var = Variable(text_input)
mel_spec_var = Variable(mel_input) mel_spec_var = Variable(mel_input)
mel_length_var = Variable(mel_lengths)
linear_spec_var = Variable(linear_input, volatile=True) linear_spec_var = Variable(linear_input, volatile=True)
# sort sequence by length for curriculum learning # sort sequence by length for curriculum learning
@ -108,6 +111,7 @@ def train(model, criterion, data_loader, optimizer, epoch):
if use_cuda: if use_cuda:
text_input_var = text_input_var.cuda() text_input_var = text_input_var.cuda()
mel_spec_var = mel_spec_var.cuda() mel_spec_var = mel_spec_var.cuda()
mel_lengths_var = mel_lengths_var.cuda()
linear_spec_var = linear_spec_var.cuda() linear_spec_var = linear_spec_var.cuda()
# forward pass # forward pass
@ -115,10 +119,11 @@ def train(model, criterion, data_loader, optimizer, epoch):
model.forward(text_input_var, mel_spec_var) model.forward(text_input_var, mel_spec_var)
# loss computation # loss computation
mel_loss = criterion(mel_output, mel_spec_var) mel_loss = criterion(mel_output, mel_spec_var, mel_lengths)
linear_loss = 0.5 * criterion(linear_output, linear_spec_var) \ linear_loss = 0.5 * criterion(linear_output, linear_spec_var, mel_lengths) \
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq], + 0.5 * criterion(linear_output[:, :, :n_priority_freq],
linear_spec_var[: ,: ,:n_priority_freq]) linear_spec_var[: ,: ,:n_priority_freq],
mel_lengths)
loss = mel_loss + linear_loss loss = mel_loss + linear_loss
# backpass and check the grad norm # backpass and check the grad norm
@ -215,26 +220,30 @@ def evaluate(model, criterion, data_loader, current_step):
text_lengths = data[1] text_lengths = data[1]
linear_input = data[2] linear_input = data[2]
mel_input = data[3] mel_input = data[3]
mel_lengths = data[4]
# convert inputs to variables # convert inputs to variables
text_input_var = Variable(text_input) text_input_var = Variable(text_input)
mel_spec_var = Variable(mel_input) mel_spec_var = Variable(mel_input)
mel_lengths_var = Variable(mel_lengths)
linear_spec_var = Variable(linear_input, volatile=True) linear_spec_var = Variable(linear_input, volatile=True)
# dispatch data to GPU # dispatch data to GPU
if use_cuda: if use_cuda:
text_input_var = text_input_var.cuda() text_input_var = text_input_var.cuda()
mel_spec_var = mel_spec_var.cuda() mel_spec_var = mel_spec_var.cuda()
mel_lengths_var = mel_lengths_var.cuda()
linear_spec_var = linear_spec_var.cuda() linear_spec_var = linear_spec_var.cuda()
# forward pass # forward pass
mel_output, linear_output, alignments = model.forward(text_input_var, mel_spec_var) mel_output, linear_output, alignments = model.forward(text_input_var, mel_spec_var)
# loss computation # loss computation
mel_loss = criterion(mel_output, mel_spec_var) mel_loss = criterion(mel_output, mel_spec_var, mel_lengths)
linear_loss = 0.5 * criterion(linear_output, linear_spec_var) \ linear_loss = 0.5 * criterion(linear_output, linear_spec_var, mel_lengths) \
+ 0.5 * criterion(linear_output[:, :, :n_priority_freq], + 0.5 * criterion(linear_output[:, :, :n_priority_freq],
linear_spec_var[: ,: ,:n_priority_freq]) linear_spec_var[: ,: ,:n_priority_freq],
mel_lengths)
loss = mel_loss + linear_loss loss = mel_loss + linear_loss
step_time = time.time() - start_time step_time = time.time() - start_time