mirror of https://github.com/coqui-ai/TTS.git
brushed up printing model load path and best loss path
parent
f2e474cd37
commit
2db40457e8
|
@ -500,6 +500,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
criterion = GlowTTSLoss()
|
||||
|
||||
if args.restore_path:
|
||||
print(f" > Restoring from {os.path.basename(args.restore_path)} ...")
|
||||
checkpoint = torch.load(args.restore_path, map_location='cpu')
|
||||
try:
|
||||
# TODO: fix optimizer init, model.cuda() needs to be called before
|
||||
|
@ -517,7 +518,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
|
||||
for group in optimizer.param_groups:
|
||||
group['initial_lr'] = c.lr
|
||||
print(" > Model restored from step %d" % checkpoint['step'],
|
||||
print(f" > Model restored from step {checkpoint['step']:d}",
|
||||
flush=True)
|
||||
args.restore_step = checkpoint['step']
|
||||
else:
|
||||
|
@ -545,7 +546,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
print(" > Restoring best loss from "
|
||||
f"{os.path.basename(args.best_path)} ...")
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
|
|
|
@ -464,6 +464,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
criterion = SpeedySpeechLoss(c)
|
||||
|
||||
if args.restore_path:
|
||||
print(f" > Restoring from {os.path.basename(args.restore_path)} ...")
|
||||
checkpoint = torch.load(args.restore_path, map_location='cpu')
|
||||
try:
|
||||
# TODO: fix optimizer init, model.cuda() needs to be called before
|
||||
|
@ -509,7 +510,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
print(" > Restoring best loss from "
|
||||
f"{os.path.basename(args.best_path)} ...")
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
|
|
|
@ -538,12 +538,13 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
# setup criterion
|
||||
criterion = TacotronLoss(c, stopnet_pos_weight=c.stopnet_pos_weight, ga_sigma=0.4)
|
||||
if args.restore_path:
|
||||
print(f" > Restoring from {os.path.basename(args.restore_path)}...")
|
||||
checkpoint = torch.load(args.restore_path, map_location='cpu')
|
||||
try:
|
||||
print(" > Restoring Model.")
|
||||
print(" > Restoring Model...")
|
||||
model.load_state_dict(checkpoint['model'])
|
||||
# optimizer restore
|
||||
print(" > Restoring Optimizer.")
|
||||
print(" > Restoring Optimizer...")
|
||||
optimizer.load_state_dict(checkpoint['optimizer'])
|
||||
if "scaler" in checkpoint and c.mixed_precision:
|
||||
print(" > Restoring AMP Scaler...")
|
||||
|
@ -551,7 +552,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
if c.reinit_layers:
|
||||
raise RuntimeError
|
||||
except (KeyError, RuntimeError):
|
||||
print(" > Partial model initialization.")
|
||||
print(" > Partial model initialization...")
|
||||
model_dict = model.state_dict()
|
||||
model_dict = set_init_dict(model_dict, checkpoint['model'], c)
|
||||
# torch.save(model_dict, os.path.join(OUT_PATH, 'state_dict.pt'))
|
||||
|
@ -589,7 +590,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
print(" > Restoring best loss from "
|
||||
f"{os.path.basename(args.best_path)} ...")
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
|
|
|
@ -485,6 +485,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
criterion_disc = DiscriminatorLoss(c)
|
||||
|
||||
if args.restore_path:
|
||||
print(f" > Restoring from {os.path.basename(args.restore_path)}...")
|
||||
checkpoint = torch.load(args.restore_path, map_location='cpu')
|
||||
try:
|
||||
print(" > Restoring Generator Model...")
|
||||
|
@ -523,7 +524,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
for group in optimizer_disc.param_groups:
|
||||
group['lr'] = c.lr_disc
|
||||
|
||||
print(" > Model restored from step %d" % checkpoint['step'],
|
||||
print(f" > Model restored from step {checkpoint['step']:d}",
|
||||
flush=True)
|
||||
args.restore_step = checkpoint['step']
|
||||
else:
|
||||
|
@ -549,10 +550,11 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
print(" > Restoring best loss from "
|
||||
f"{os.path.basename(args.best_path)} ...")
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
print(f" > Starting with best loss of {best_loss}.")
|
||||
keep_best = c.get('keep_best', False)
|
||||
keep_after = c.get('keep_after', 10000) # void if keep_best False
|
||||
|
||||
|
|
|
@ -354,6 +354,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
criterion.cuda()
|
||||
|
||||
if args.restore_path:
|
||||
print(f" > Restoring from {os.path.basename(args.restore_path)}...")
|
||||
checkpoint = torch.load(args.restore_path, map_location='cpu')
|
||||
try:
|
||||
print(" > Restoring Model...")
|
||||
|
@ -397,7 +398,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
print(" > Restoring best loss from "
|
||||
f"{os.path.basename(args.best_path)} ...")
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
|
|
|
@ -383,6 +383,7 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
|
||||
# restore any checkpoint
|
||||
if args.restore_path:
|
||||
print(f" > Restoring from {os.path.basename(args.restore_path)}...")
|
||||
checkpoint = torch.load(args.restore_path, map_location="cpu")
|
||||
try:
|
||||
print(" > Restoring Model...")
|
||||
|
@ -420,7 +421,8 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
best_loss = float('inf')
|
||||
print(" > Starting with inf best loss.")
|
||||
else:
|
||||
print(args.best_path)
|
||||
print(" > Restoring best loss from "
|
||||
f"{os.path.basename(args.best_path)} ...")
|
||||
best_loss = torch.load(args.best_path,
|
||||
map_location='cpu')['model_loss']
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
|
|
|
@ -157,7 +157,6 @@ def process_args(args, model_type):
|
|||
args.restore_path, best_model = get_last_models(args.continue_path)
|
||||
if not args.best_path:
|
||||
args.best_path = best_model
|
||||
print(f" > Training continues for {args.restore_path}")
|
||||
|
||||
# setup output paths and read configs
|
||||
c = load_config(args.config_path)
|
||||
|
@ -171,8 +170,7 @@ def process_args(args, model_type):
|
|||
if model_class == "TTS":
|
||||
check_config_tts(c)
|
||||
elif model_class == "VOCODER":
|
||||
print("Vocoder config checker not implemented, "
|
||||
"skipping ...")
|
||||
print("Vocoder config checker not implemented, skipping ...")
|
||||
else:
|
||||
raise ValueError(f"model type {model_type} not recognized!")
|
||||
|
||||
|
|
Loading…
Reference in New Issue