mirror of https://github.com/coqui-ai/TTS.git
use ReLU for GMM
parent
b904bc02d6
commit
2966e3f2d1
|
@ -120,7 +120,7 @@ class GravesAttention(nn.Module):
|
|||
self.J = None
|
||||
self.N_a = nn.Sequential(
|
||||
nn.Linear(query_dim, query_dim, bias=True),
|
||||
nn.Tanh(),
|
||||
nn.ReLU(),
|
||||
nn.Linear(query_dim, 3*K, bias=True))
|
||||
self.attention_weights = None
|
||||
self.mu_prev = None
|
||||
|
@ -163,7 +163,7 @@ class GravesAttention(nn.Module):
|
|||
sig_t = torch.pow(torch.nn.functional.softplus(b_t), 2)
|
||||
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
|
||||
# TODO try sigmoid here
|
||||
g_t = (torch.softmax(g_t, dim=-1) / sig_t) * self.COEF
|
||||
g_t = (torch.softmax(g_t, dim=-1) / sig_t)
|
||||
|
||||
# each B x K x T_in
|
||||
g_t = g_t.unsqueeze(2).expand(g_t.size(0),
|
||||
|
@ -175,7 +175,7 @@ class GravesAttention(nn.Module):
|
|||
|
||||
# attention weights
|
||||
phi_t = g_t * torch.exp(-0.5 * sig_t * (mu_t_ - j)**2)
|
||||
alpha_t = torch.sum(phi_t, 1)
|
||||
alpha_t = self.COEF * torch.sum(phi_t, 1)
|
||||
|
||||
# apply masking
|
||||
if mask is not None:
|
||||
|
|
Loading…
Reference in New Issue