refactored keep_all_best

pull/367/head
gerazov 2021-02-15 18:40:17 +01:00 committed by Eren Gölge
parent 8cefa76bae
commit 2451a813a2
26 changed files with 58 additions and 58 deletions

View File

@ -551,8 +551,8 @@ def main(args): # pylint: disable=redefined-outer-name
best_loss = torch.load(args.best_path,
map_location='cpu')['model_loss']
print(f" > Starting with loaded last best loss {best_loss}.")
keep_best = c.get('keep_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_best False
keep_all_best = c.get('keep_all_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_all_best False
# define dataloaders
train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
@ -574,7 +574,7 @@ def main(args): # pylint: disable=redefined-outer-name
target_loss = eval_avg_loss_dict['avg_loss']
best_loss = save_best_model(target_loss, best_loss, model, optimizer,
global_step, epoch, c.r, OUT_PATH,
keep_best=keep_best, keep_after=keep_after)
keep_all_best=keep_all_best, keep_after=keep_after)
if __name__ == '__main__':

View File

@ -515,8 +515,8 @@ def main(args): # pylint: disable=redefined-outer-name
best_loss = torch.load(args.best_path,
map_location='cpu')['model_loss']
print(f" > Starting with loaded last best loss {best_loss}.")
keep_best = c.get('keep_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_best False
keep_all_best = c.get('keep_all_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_all_best False
# define dataloaders
train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
@ -536,7 +536,7 @@ def main(args): # pylint: disable=redefined-outer-name
target_loss = eval_avg_loss_dict['avg_loss']
best_loss = save_best_model(target_loss, best_loss, model, optimizer,
global_step, epoch, c.r, OUT_PATH,
keep_best=keep_best, keep_after=keep_after)
keep_all_best=keep_all_best, keep_after=keep_after)
if __name__ == '__main__':

View File

@ -595,8 +595,8 @@ def main(args): # pylint: disable=redefined-outer-name
best_loss = torch.load(args.best_path,
map_location='cpu')['model_loss']
print(f" > Starting with loaded last best loss {best_loss}.")
keep_best = c.get('keep_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_best False
keep_all_best = c.get('keep_all_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_all_best False
# define data loaders
train_loader = setup_loader(ap,
@ -648,7 +648,7 @@ def main(args): # pylint: disable=redefined-outer-name
epoch,
c.r,
OUT_PATH,
keep_best=keep_best,
keep_all_best=keep_all_best,
keep_after=keep_after,
scaler=scaler.state_dict() if c.mixed_precision else None
)

View File

@ -555,8 +555,8 @@ def main(args): # pylint: disable=redefined-outer-name
best_loss = torch.load(args.best_path,
map_location='cpu')['model_loss']
print(f" > Starting with best loss of {best_loss}.")
keep_best = c.get('keep_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_best False
keep_all_best = c.get('keep_all_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_all_best False
global_step = args.restore_step
for epoch in range(0, c.epochs):
@ -581,7 +581,7 @@ def main(args): # pylint: disable=redefined-outer-name
global_step,
epoch,
OUT_PATH,
keep_best=keep_best,
keep_all_best=keep_all_best,
keep_after=keep_after,
model_losses=eval_avg_loss_dict,
)

View File

@ -403,8 +403,8 @@ def main(args): # pylint: disable=redefined-outer-name
best_loss = torch.load(args.best_path,
map_location='cpu')['model_loss']
print(f" > Starting with loaded last best loss {best_loss}.")
keep_best = c.get('keep_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_best False
keep_all_best = c.get('keep_all_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_all_best False
global_step = args.restore_step
for epoch in range(0, c.epochs):
@ -426,7 +426,7 @@ def main(args): # pylint: disable=redefined-outer-name
global_step,
epoch,
OUT_PATH,
keep_best=keep_best,
keep_all_best=keep_all_best,
keep_after=keep_after,
model_losses=eval_avg_loss_dict,
scaler=scaler.state_dict() if c.mixed_precision else None

View File

@ -426,8 +426,8 @@ def main(args): # pylint: disable=redefined-outer-name
best_loss = torch.load(args.best_path,
map_location='cpu')['model_loss']
print(f" > Starting with loaded last best loss {best_loss}.")
keep_best = c.get('keep_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_best False
keep_all_best = c.get('keep_all_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_all_best False
global_step = args.restore_step
for epoch in range(0, c.epochs):
@ -450,7 +450,7 @@ def main(args): # pylint: disable=redefined-outer-name
global_step,
epoch,
OUT_PATH,
keep_best=keep_best,
keep_all_best=keep_all_best,
keep_after=keep_after,
model_losses=eval_avg_loss_dict,
scaler=scaler.state_dict() if c.mixed_precision else None

View File

@ -121,8 +121,8 @@
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -93,8 +93,8 @@
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"apex_amp_level": null,

View File

@ -105,8 +105,8 @@
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -121,8 +121,8 @@
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -109,8 +109,8 @@
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.:set n
"mixed_precision": false,

View File

@ -67,7 +67,7 @@ def parse_arguments(argv):
return parser.parse_args()
def get_last_models(path):
def get_last_checkpoint(path):
"""Get latest checkpoint or/and best model in path.
It is based on globbing for `*.pth.tar` and the RegEx
@ -144,7 +144,7 @@ def process_args(args, model_type):
if args.continue_path:
args.output_path = args.continue_path
args.config_path = os.path.join(args.continue_path, "config.json")
args.restore_path, best_model = get_last_models(args.continue_path)
args.restore_path, best_model = get_last_checkpoint(args.continue_path)
if not args.best_path:
args.best_path = best_model

View File

@ -138,8 +138,8 @@
"print_eval": false, // If True, it prints loss values for each step in eval run.
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -128,8 +128,8 @@
"print_eval": false, // If True, it prints loss values for each step in eval run.
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -141,8 +141,8 @@
"print_eval": false, // If True, it prints loss values for each step in eval run.
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -130,8 +130,8 @@
"print_eval": false, // If True, it prints loss values for each step in eval run.
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -124,8 +124,8 @@
"print_eval": false, // If True, it prints loss values for each step in eval run.
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -103,8 +103,8 @@
"print_eval": false, // If True, it prints loss values for each step in eval run.
"save_step": 5000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -89,8 +89,8 @@
"print_eval": false, // If True, it prints loss values for each step in eval run.
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": false, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -64,7 +64,7 @@ def save_checkpoint(model, optimizer, scheduler, model_disc, optimizer_disc,
def save_best_model(current_loss, best_loss, model, optimizer, scheduler,
model_disc, optimizer_disc, scheduler_disc, current_step,
epoch, out_path, keep_best=False, keep_after=10000,
epoch, out_path, keep_all_best=False, keep_after=10000,
**kwargs):
if current_loss < best_loss:
best_model_name = f'best_model_{current_step}.pth.tar'
@ -82,7 +82,7 @@ def save_best_model(current_loss, best_loss, model, optimizer, scheduler,
model_loss=current_loss,
**kwargs)
# only delete previous if current is saved successfully
if not keep_best or (current_step < keep_after):
if not keep_all_best or (current_step < keep_after):
model_names = glob.glob(
os.path.join(out_path, 'best_model*.pth.tar'))
for model_name in model_names:

View File

@ -106,8 +106,8 @@
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"apex_amp_level": null,

View File

@ -111,8 +111,8 @@
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 5000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.:set n
"mixed_precision": false,

View File

@ -122,8 +122,8 @@
"print_eval": false, // If True, it prints intermediate loss values in evalulation.
"save_step": 10000, // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -131,8 +131,8 @@
"print_eval": false, // If True, it prints loss values for each step in eval run.
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -101,8 +101,8 @@
"print_eval": false, // If True, it prints loss values for each step in eval run.
"save_step": 10000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING

View File

@ -97,8 +97,8 @@
"print_eval": false, // If True, it prints loss values for each step in eval run.
"save_step": 25000, // Number of training steps expected to plot training stats on TB and save model checkpoints.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"keep_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_best is true
"keep_all_best": true, // If true, keeps all best_models after keep_after steps
"keep_after": 10000, // Global step after which to keep best models if keep_all_best is true
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
// DATA LOADING