mirror of https://github.com/coqui-ai/TTS.git
add new test sentence
parent
ccba431cda
commit
216bba9759
|
@ -1,24 +0,0 @@
|
|||
# coding: utf-8
|
||||
# import torch
|
||||
# from torch import nn
|
||||
|
||||
# class StopProjection(nn.Module):
|
||||
# r""" Simple projection layer to predict the "stop token"
|
||||
|
||||
# Args:
|
||||
# in_features (int): size of the input vector
|
||||
# out_features (int or list): size of each output vector. aka number
|
||||
# of predicted frames.
|
||||
# """
|
||||
|
||||
# def __init__(self, in_features, out_features):
|
||||
# super(StopProjection, self).__init__()
|
||||
# self.linear = nn.Linear(in_features, out_features)
|
||||
# self.dropout = nn.Dropout(0.5)
|
||||
# self.sigmoid = nn.Sigmoid()
|
||||
|
||||
# def forward(self, inputs):
|
||||
# out = self.dropout(inputs)
|
||||
# out = self.linear(out)
|
||||
# out = self.sigmoid(out)
|
||||
# return out
|
5
train.py
5
train.py
|
@ -333,7 +333,7 @@ def evaluate(model, criterion, ap, global_step, epoch):
|
|||
if c.stopnet:
|
||||
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus)
|
||||
|
||||
# detach loss values
|
||||
# detach loss values
|
||||
loss_dict_new = dict()
|
||||
for key, value in loss_dict.items():
|
||||
if isinstance(value, (int, float)):
|
||||
|
@ -388,7 +388,8 @@ def evaluate(model, criterion, ap, global_step, epoch):
|
|||
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
|
||||
"Be a voice, not an echo.",
|
||||
"I'm sorry Dave. I'm afraid I can't do that.",
|
||||
"This cake is great. It's so delicious and moist."
|
||||
"This cake is great. It's so delicious and moist.",
|
||||
"Prior to November 22, 1963."
|
||||
]
|
||||
else:
|
||||
with open(c.test_sentences_file, "r") as f:
|
||||
|
|
Loading…
Reference in New Issue