mirror of https://github.com/coqui-ai/TTS.git
fix README
parent
d320ccf6c6
commit
20d3bc5e0d
45
README.md
45
README.md
|
@ -3,27 +3,15 @@
|
|||
|
||||
# TTS: Text-to-Speech for all.
|
||||
|
||||
<<<<<<< HEAD
|
||||
<p align='center'>
|
||||
<img src='https://circleci.com/gh/mozilla/TTS/tree/dev.svg?style=svg' alt="mozilla"/>
|
||||
<a href='https://discourse.mozilla.org/c/tts'><img src="https://img.shields.io/badge/discourse-online-green.svg"/></a>
|
||||
<a href='https://opensource.org/licenses/MPL-2.0'> <img src="https://img.shields.io/badge/License-MPL%202.0-brightgreen.svg"/></a>
|
||||
</p>
|
||||
=======
|
||||
TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to be achive the best trade-off among ease-of-training, speed and quality.
|
||||
TTS comes with [pretrained models](https://github.com/mozilla/TTS/wiki/Released-Models), tools for measuring dataset quality and already used in **20+ languages** for products and research projects.
|
||||
>>>>>>> dev
|
||||
|
||||
[![CircleCI](<https://circleci.com/gh/mozilla/TTS/tree/dev.svg?style=svg>)]()
|
||||
[![License](<https://img.shields.io/badge/License-MPL%202.0-brightgreen.svg>)](https://opensource.org/licenses/MPL-2.0)
|
||||
|
||||
<<<<<<< HEAD
|
||||
TTS is a deep learning based Text2Speech project, low in cost and high in quality.
|
||||
=======
|
||||
:loudspeaker: [English Voice Samples](https://erogol.github.io/ddc-samples/) and [SoundCloud playlist](https://soundcloud.com/user-565970875/pocket-article-wavernn-and-tacotron2)
|
||||
|
||||
:man_cook: [TTS training recipes](https://github.com/erogol/TTS_recipes)
|
||||
>>>>>>> dev
|
||||
|
||||
:page_facing_up: [Text-to-Speech paper collection](https://github.com/erogol/TTS-papers)
|
||||
|
||||
|
@ -57,34 +45,6 @@ Please use our dedicated channels for questions and discussion. Help is much mor
|
|||
"Mozilla*" and "Judy*" are our models.
|
||||
[Details...](https://github.com/mozilla/TTS/wiki/Mean-Opinion-Score-Results)
|
||||
|
||||
<<<<<<< HEAD
|
||||
## Provided Models and Methods
|
||||
Text-to-Spectrogram:
|
||||
- Tacotron: [paper](https://arxiv.org/abs/1703.10135)
|
||||
- Tacotron2: [paper](https://arxiv.org/abs/1712.05884)
|
||||
- Glow-TTS: [paper](https://arxiv.org/abs/2005.11129)
|
||||
|
||||
Attention Methods:
|
||||
- Guided Attention: [paper](https://arxiv.org/abs/1710.08969)
|
||||
- Forward Backward Decoding: [paper](https://arxiv.org/abs/1907.09006)
|
||||
- Graves Attention: [paper](https://arxiv.org/abs/1907.09006)
|
||||
- Double Decoder Consistency: [blog](https://erogol.com/solving-attention-problems-of-tts-models-with-double-decoder-consistency/)
|
||||
|
||||
Speaker Encoder:
|
||||
- GE2E: [paper](https://arxiv.org/abs/1710.10467)
|
||||
|
||||
Vocoders:
|
||||
- MelGAN: [paper](https://arxiv.org/abs/1710.10467)
|
||||
- MultiBandMelGAN: [paper](https://arxiv.org/abs/2005.05106)
|
||||
- ParallelWaveGAN: [paper](https://arxiv.org/abs/1910.11480)
|
||||
- GAN-TTS discriminators: [paper](https://arxiv.org/abs/1909.11646)
|
||||
- WaveRNN: [origin](https://github.com/fatchord/WaveRNN/)
|
||||
- WaveGrad: [paper](https://arxiv.org/abs/2009.00713)
|
||||
|
||||
You can also help us implement more models. Some TTS related work can be found [here](https://github.com/erogol/TTS-papers).
|
||||
|
||||
=======
|
||||
>>>>>>> dev
|
||||
## Features
|
||||
- High performance Deep Learning models for Text2Speech tasks.
|
||||
- Text2Spec models (Tacotron, Tacotron2).
|
||||
|
@ -163,11 +123,6 @@ Audio examples: [soundcloud](https://soundcloud.com/user-565970875/pocket-articl
|
|||
|
||||
<img src="images/example_model_output.png?raw=true" alt="example_output" width="400"/>
|
||||
|
||||
<<<<<<< HEAD
|
||||
## [TTS Tutorials and Notebooks](https://github.com/mozilla/TTS/wiki/TTS-Notebooks-and-Tutorials)
|
||||
|
||||
=======
|
||||
>>>>>>> dev
|
||||
## Datasets and Data-Loading
|
||||
TTS provides a generic dataloader easy to use for your custom dataset.
|
||||
You just need to write a simple function to format the dataset. Check ```datasets/preprocess.py``` to see some examples.
|
||||
|
|
Loading…
Reference in New Issue