diff --git a/config_cluster.json b/config_cluster.json index ae28c765..d810a6a3 100644 --- a/config_cluster.json +++ b/config_cluster.json @@ -30,7 +30,7 @@ }, "model": "Tacotron2", // one of the model in models/ - "grad_clip": 0.05, // upper limit for gradients for clipping. + "grad_clip": 1, // upper limit for gradients for clipping. "epochs": 1000, // total number of epochs to train. "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. "lr_decay": false, // if true, Noam learning rate decaying is applied through training. @@ -41,21 +41,21 @@ "batch_size": 16, // Batch size for training. Lower values than 32 might cause hard to learn attention. "eval_batch_size":16, "r": 1, // Number of frames to predict for step. - "wd": 0.000002, // Weight decay weight. + "wd": 0.000001, // Weight decay weight. "checkpoint": true, // If true, it saves checkpoints per "save_step" "save_step": 1000, // Number of training steps expected to save traning stats and checkpoints. "print_step": 10, // Number of steps to log traning on console. - "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. - "batch_group_size": 4, //Number of batches to shuffle after bucketing. + "tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + "batch_group_size": 8, //Number of batches to shuffle after bucketing. "run_eval": true, - "test_delay_epochs": 100, //Until attention is aligned, testing only wastes computation time. + "test_delay_epochs": 10, //Until attention is aligned, testing only wastes computation time. "data_path": "/media/erogol/data_ssd/Data/LJSpeech-1.1", // DATASET-RELATED: can overwritten from command argument "meta_file_train": "prompts_train.data", // DATASET-RELATED: metafile for training dataloader. "meta_file_val": "prompts_val.data", // DATASET-RELATED: metafile for evaluation dataloader. "dataset": "nancy", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py "min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training - "max_seq_len": 50, // DATASET-RELATED: maximum text length + "max_seq_len": 120, // DATASET-RELATED: maximum text length "output_path": "../keep/", // DATASET-RELATED: output path for all training outputs. "num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values. "num_val_loader_workers": 4, // number of evaluation data loader processes.