mirror of https://github.com/coqui-ai/TTS.git
Fix Pylint issues
parent
509292d56a
commit
11e7895329
|
@ -1,12 +1,10 @@
|
|||
# visualisation tools for mimic2
|
||||
# visualisation tools for mimic2
|
||||
import matplotlib.pyplot as plt
|
||||
from statistics import stdev, mode, mean, median
|
||||
from statistics import StatisticsError
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import csv
|
||||
import copy
|
||||
import seaborn as sns
|
||||
import random
|
||||
from text.cmudict import CMUDict
|
||||
|
@ -32,7 +30,7 @@ def append_data_statistics(meta_data):
|
|||
std = stdev(
|
||||
d["audio_len"] for d in data
|
||||
)
|
||||
except:
|
||||
except StatisticsError:
|
||||
std = 0
|
||||
|
||||
meta_data[char_cnt]["mean"] = mean_audio_len
|
||||
|
@ -114,7 +112,7 @@ def plot(meta_data, save_path=None):
|
|||
y_mode = graph_data['y_mode']
|
||||
y_median = graph_data['y_median']
|
||||
y_num_samples = graph_data['y_num_samples']
|
||||
|
||||
|
||||
plt.figure()
|
||||
plt.plot(x, y_avg, 'ro')
|
||||
plt.xlabel("character lengths", fontsize=30)
|
||||
|
@ -122,7 +120,7 @@ def plot(meta_data, save_path=None):
|
|||
if save:
|
||||
name = "char_len_vs_avg_secs"
|
||||
plt.savefig(os.path.join(save_path, name))
|
||||
|
||||
|
||||
plt.figure()
|
||||
plt.plot(x, y_mode, 'ro')
|
||||
plt.xlabel("character lengths", fontsize=30)
|
||||
|
@ -182,12 +180,12 @@ def plot_phonemes(train_path, cmu_dict_path, save_path):
|
|||
for key in phonemes:
|
||||
x.append(key)
|
||||
y.append(phonemes[key])
|
||||
|
||||
|
||||
plt.figure()
|
||||
plt.rcParams["figure.figsize"] = (50, 20)
|
||||
plot = sns.barplot(x, y)
|
||||
barplot = sns.barplot(x, y)
|
||||
if save_path:
|
||||
fig = plot.get_figure()
|
||||
fig = barplot.get_figure()
|
||||
fig.savefig(os.path.join(save_path, "phoneme_dist"))
|
||||
|
||||
|
||||
|
@ -201,7 +199,7 @@ def main():
|
|||
'--save_to', help='path to save charts of data to'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--cmu_dict_path', help='give cmudict-0.7b to see phoneme distribution'
|
||||
'--cmu_dict_path', help='give cmudict-0.7b to see phoneme distribution'
|
||||
)
|
||||
args = parser.parse_args()
|
||||
meta_data = process_meta_data(args.train_file_path)
|
||||
|
@ -210,8 +208,8 @@ def main():
|
|||
if args.cmu_dict_path:
|
||||
plt.rcParams["figure.figsize"] = (30, 10)
|
||||
plot_phonemes(args.train_file_path, args.cmu_dict_path, args.save_to)
|
||||
|
||||
|
||||
plt.show()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
main()
|
||||
|
|
|
@ -1,14 +1,12 @@
|
|||
import os
|
||||
import numpy as np
|
||||
import collections
|
||||
import librosa
|
||||
import torch
|
||||
import random
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from utils.text import text_to_sequence, phoneme_to_sequence
|
||||
from utils.data import (prepare_data, pad_per_step, prepare_tensor,
|
||||
prepare_stop_target)
|
||||
from utils.data import prepare_data, prepare_tensor, prepare_stop_target
|
||||
|
||||
|
||||
class MyDataset(Dataset):
|
||||
|
@ -35,14 +33,14 @@ class MyDataset(Dataset):
|
|||
meta_data (list): list of dataset instances.
|
||||
speaker_id_cache_path (str): path where the speaker name to id
|
||||
mapping is stored
|
||||
batch_group_size (int): (0) range of batch randomization after sorting
|
||||
sequences by length.
|
||||
min_seq_len (int): (0) minimum sequence length to be processed
|
||||
batch_group_size (int): (0) range of batch randomization after sorting
|
||||
sequences by length.
|
||||
min_seq_len (int): (0) minimum sequence length to be processed
|
||||
by the loader.
|
||||
max_seq_len (int): (float("inf")) maximum sequence length.
|
||||
use_phonemes (bool): (true) if true, text converted to phonemes.
|
||||
phoneme_cache_path (str): path to cache phoneme features.
|
||||
phoneme_language (str): one the languages from
|
||||
phoneme_cache_path (str): path to cache phoneme features.
|
||||
phoneme_language (str): one the languages from
|
||||
https://github.com/bootphon/phonemizer#languages
|
||||
enable_eos_bos (bool): enable end of sentence and beginning of sentences characters.
|
||||
verbose (bool): print diagnostic information.
|
||||
|
@ -76,7 +74,8 @@ class MyDataset(Dataset):
|
|||
audio = self.ap.load_wav(filename)
|
||||
return audio
|
||||
|
||||
def load_np(self, filename):
|
||||
@staticmethod
|
||||
def load_np(filename):
|
||||
data = np.load(filename).astype('float32')
|
||||
return data
|
||||
|
||||
|
@ -87,7 +86,7 @@ class MyDataset(Dataset):
|
|||
if os.path.isfile(tmp_path):
|
||||
try:
|
||||
text = np.load(tmp_path)
|
||||
except:
|
||||
except (IOError, ValueError):
|
||||
print(" > ERROR: phoneme connot be loaded for {}. Recomputing.".format(wav_file))
|
||||
text = np.asarray(
|
||||
phoneme_to_sequence(
|
||||
|
@ -126,7 +125,7 @@ class MyDataset(Dataset):
|
|||
def sort_items(self):
|
||||
r"""Sort instances based on text length in ascending order"""
|
||||
lengths = np.array([len(ins[0]) for ins in self.items])
|
||||
|
||||
|
||||
idxs = np.argsort(lengths)
|
||||
new_items = []
|
||||
ignored = []
|
||||
|
@ -150,10 +149,10 @@ class MyDataset(Dataset):
|
|||
print(" | > Max length sequence: {}".format(np.max(lengths)))
|
||||
print(" | > Min length sequence: {}".format(np.min(lengths)))
|
||||
print(" | > Avg length sequence: {}".format(np.mean(lengths)))
|
||||
print(" | > Num. instances discarded by max-min seq limits: {}".format(
|
||||
len(ignored), self.min_seq_len))
|
||||
print(" | > Num. instances discarded by max-min (max={}, min={}) seq limits: {}".format(
|
||||
self.max_seq_len, self.min_seq_len, len(ignored)))
|
||||
print(" | > Batch group size: {}.".format(self.batch_group_size))
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.items)
|
||||
|
||||
|
@ -182,7 +181,7 @@ class MyDataset(Dataset):
|
|||
]
|
||||
text = [batch[idx]['text'] for idx in ids_sorted_decreasing]
|
||||
speaker_name = [batch[idx]['speaker_name']
|
||||
for idx in ids_sorted_decreasing]
|
||||
for idx in ids_sorted_decreasing]
|
||||
|
||||
mel = [self.ap.melspectrogram(w).astype('float32') for w in wav]
|
||||
linear = [self.ap.spectrogram(w).astype('float32') for w in wav]
|
||||
|
|
|
@ -11,7 +11,7 @@ def get_preprocessor_by_name(name):
|
|||
|
||||
|
||||
def tweb(root_path, meta_file):
|
||||
"""Normalize TWEB dataset.
|
||||
"""Normalize TWEB dataset.
|
||||
https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset
|
||||
"""
|
||||
txt_file = os.path.join(root_path, meta_file)
|
||||
|
@ -123,9 +123,9 @@ def nancy(root_path, meta_file):
|
|||
speaker_name = "nancy"
|
||||
with open(txt_file, 'r') as ttf:
|
||||
for line in ttf:
|
||||
id = line.split()[1]
|
||||
utt_id = line.split()[1]
|
||||
text = line[line.find('"') + 1:line.rfind('"') - 1]
|
||||
wav_file = os.path.join(root_path, "wavn", id + ".wav")
|
||||
wav_file = os.path.join(root_path, "wavn", utt_id + ".wav")
|
||||
items.append([text, wav_file, speaker_name])
|
||||
return items
|
||||
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
# edited from https://github.com/fastai/imagenet-fast/blob/master/imagenet_nv/distributed.py
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import time
|
||||
import subprocess
|
||||
|
@ -19,6 +18,7 @@ class DistributedSampler(Sampler):
|
|||
"""
|
||||
|
||||
def __init__(self, dataset, num_replicas=None, rank=None):
|
||||
super(DistributedSampler, self).__init__(dataset)
|
||||
if num_replicas is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
|
@ -54,12 +54,6 @@ class DistributedSampler(Sampler):
|
|||
self.epoch = epoch
|
||||
|
||||
|
||||
def reduce_tensor(tensor, n_gpus):
|
||||
rt = tensor.clone()
|
||||
dist.all_reduce(rt, op=dist.reduce_op.SUM)
|
||||
rt /= n_gpus
|
||||
return rt
|
||||
|
||||
def reduce_tensor(tensor, num_gpus):
|
||||
rt = tensor.clone()
|
||||
dist.all_reduce(rt, op=dist.reduce_op.SUM)
|
||||
|
@ -91,7 +85,7 @@ def apply_gradient_allreduce(module):
|
|||
dist.broadcast(p, 0)
|
||||
|
||||
def allreduce_params():
|
||||
if (module.needs_reduction):
|
||||
if module.needs_reduction:
|
||||
module.needs_reduction = False
|
||||
# bucketing params based on value types
|
||||
buckets = {}
|
||||
|
@ -113,23 +107,39 @@ def apply_gradient_allreduce(module):
|
|||
|
||||
for param in list(module.parameters()):
|
||||
|
||||
def allreduce_hook(*unused):
|
||||
def allreduce_hook(*_):
|
||||
Variable._execution_engine.queue_callback(allreduce_params)
|
||||
|
||||
if param.requires_grad:
|
||||
param.register_hook(allreduce_hook)
|
||||
|
||||
def set_needs_reduction(self, input, output):
|
||||
def set_needs_reduction(self, *_):
|
||||
self.needs_reduction = True
|
||||
|
||||
module.register_forward_hook(set_needs_reduction)
|
||||
return module
|
||||
|
||||
|
||||
def main(args):
|
||||
def main():
|
||||
"""
|
||||
Call train.py as a new process and pass command arguments
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'--restore_path',
|
||||
type=str,
|
||||
help='Folder path to checkpoints',
|
||||
default='')
|
||||
parser.add_argument(
|
||||
'--config_path',
|
||||
type=str,
|
||||
help='path to config file for training',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--data_path', type=str, help='dataset path.', default='')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
CONFIG = load_config(args.config_path)
|
||||
OUT_PATH = create_experiment_folder(CONFIG.output_path, CONFIG.run_name,
|
||||
True)
|
||||
|
@ -150,7 +160,7 @@ def main(args):
|
|||
if not os.path.isdir(stdout_path):
|
||||
os.makedirs(stdout_path)
|
||||
os.chmod(stdout_path, 0o775)
|
||||
|
||||
|
||||
# run processes
|
||||
processes = []
|
||||
for i in range(num_gpus):
|
||||
|
@ -159,7 +169,7 @@ def main(args):
|
|||
command[6] = '--rank={}'.format(i)
|
||||
stdout = None if i == 0 else open(
|
||||
os.path.join(stdout_path, "process_{}.log".format(i)), "w")
|
||||
p = subprocess.Popen(['python3'.format(i)] + command, stdout=stdout, env=my_env)
|
||||
p = subprocess.Popen(['python3'] + command, stdout=stdout, env=my_env)
|
||||
processes.append(p)
|
||||
print(command)
|
||||
|
||||
|
@ -168,19 +178,4 @@ def main(args):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
'--restore_path',
|
||||
type=str,
|
||||
help='Folder path to checkpoints',
|
||||
default='')
|
||||
parser.add_argument(
|
||||
'--config_path',
|
||||
type=str,
|
||||
help='path to config file for training',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--data_path', type=str, help='dataset path.', default='')
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
main()
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
from math import sqrt
|
||||
import torch
|
||||
from torch.autograd import Variable
|
||||
from torch import nn
|
||||
from torch.autograd import Variable
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
|
@ -107,6 +106,8 @@ class LocationLayer(nn.Module):
|
|||
|
||||
|
||||
class Attention(nn.Module):
|
||||
# Pylint gets confused by PyTorch conventions here
|
||||
#pylint: disable=attribute-defined-outside-init
|
||||
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
||||
location_attention, attention_location_n_filters,
|
||||
attention_location_kernel_size, windowing, norm, forward_attn,
|
||||
|
@ -262,4 +263,4 @@ class Attention(nn.Module):
|
|||
context = torch.bmm(alignment.unsqueeze(1), inputs)
|
||||
context = context.squeeze(1)
|
||||
self.attention_weights = alignment
|
||||
return context
|
||||
return context
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# coding: utf-8
|
||||
import torch
|
||||
from torch import nn
|
||||
# import torch
|
||||
# from torch import nn
|
||||
|
||||
# class StopProjection(nn.Module):
|
||||
# r""" Simple projection layer to predict the "stop token"
|
||||
|
|
|
@ -77,10 +77,11 @@ class ReferenceEncoder(nn.Module):
|
|||
|
||||
return out.squeeze(0)
|
||||
|
||||
def calculate_post_conv_height(self, height, kernel_size, stride, pad,
|
||||
@staticmethod
|
||||
def calculate_post_conv_height(height, kernel_size, stride, pad,
|
||||
n_convs):
|
||||
"""Height of spec after n convolutions with fixed kernel/stride/pad."""
|
||||
for i in range(n_convs):
|
||||
for _ in range(n_convs):
|
||||
height = (height - kernel_size + 2 * pad) // stride + 1
|
||||
return height
|
||||
|
||||
|
@ -165,4 +166,4 @@ class MultiHeadAttention(nn.Module):
|
|||
torch.split(out, 1, dim=0),
|
||||
dim=3).squeeze(0) # [N, T_q, num_units]
|
||||
|
||||
return out
|
||||
return out
|
||||
|
|
|
@ -1,17 +1,13 @@
|
|||
import torch
|
||||
from torch.nn import functional
|
||||
from torch import nn
|
||||
from torch.nn import functional
|
||||
from utils.generic_utils import sequence_mask
|
||||
|
||||
|
||||
class L1LossMasked(nn.Module):
|
||||
def __init__(self):
|
||||
super(L1LossMasked, self).__init__()
|
||||
|
||||
def forward(self, input, target, length):
|
||||
def forward(self, x, target, length):
|
||||
"""
|
||||
Args:
|
||||
input: A Variable containing a FloatTensor of size
|
||||
x: A Variable containing a FloatTensor of size
|
||||
(batch, max_len, dim) which contains the
|
||||
unnormalized probability for each class.
|
||||
target: A Variable containing a LongTensor of size
|
||||
|
@ -26,21 +22,18 @@ class L1LossMasked(nn.Module):
|
|||
target.requires_grad = False
|
||||
mask = sequence_mask(
|
||||
sequence_length=length, max_len=target.size(1)).unsqueeze(2).float()
|
||||
mask = mask.expand_as(input)
|
||||
mask = mask.expand_as(x)
|
||||
loss = functional.l1_loss(
|
||||
input * mask, target * mask, reduction="sum")
|
||||
x * mask, target * mask, reduction="sum")
|
||||
loss = loss / mask.sum()
|
||||
return loss
|
||||
|
||||
|
||||
class MSELossMasked(nn.Module):
|
||||
def __init__(self):
|
||||
super(MSELossMasked, self).__init__()
|
||||
|
||||
def forward(self, input, target, length):
|
||||
def forward(self, x, target, length):
|
||||
"""
|
||||
Args:
|
||||
input: A Variable containing a FloatTensor of size
|
||||
x: A Variable containing a FloatTensor of size
|
||||
(batch, max_len, dim) which contains the
|
||||
unnormalized probability for each class.
|
||||
target: A Variable containing a LongTensor of size
|
||||
|
@ -55,9 +48,8 @@ class MSELossMasked(nn.Module):
|
|||
target.requires_grad = False
|
||||
mask = sequence_mask(
|
||||
sequence_length=length, max_len=target.size(1)).unsqueeze(2).float()
|
||||
mask = mask.expand_as(input)
|
||||
mask = mask.expand_as(x)
|
||||
loss = functional.mse_loss(
|
||||
input * mask, target * mask, reduction="sum")
|
||||
x * mask, target * mask, reduction="sum")
|
||||
loss = loss / mask.sum()
|
||||
return loss
|
||||
|
||||
|
|
|
@ -177,7 +177,7 @@ class CBHG(nn.Module):
|
|||
# (B, in_features, T_in)
|
||||
if x.size(-1) == self.in_features:
|
||||
x = x.transpose(1, 2)
|
||||
T = x.size(-1)
|
||||
# T = x.size(-1)
|
||||
# (B, hid_features*K, T_in)
|
||||
# Concat conv1d bank outputs
|
||||
outs = []
|
||||
|
@ -261,7 +261,7 @@ class PostCBHG(nn.Module):
|
|||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
r"""Decoder module.
|
||||
"""Decoder module.
|
||||
|
||||
Args:
|
||||
in_features (int): input vector (encoder output) sample size.
|
||||
|
@ -270,6 +270,8 @@ class Decoder(nn.Module):
|
|||
memory_size (int): size of the past window. if <= 0 memory_size = r
|
||||
TODO: arguments
|
||||
"""
|
||||
# Pylint gets confused by PyTorch conventions here
|
||||
#pylint: disable=attribute-defined-outside-init
|
||||
|
||||
def __init__(self, in_features, memory_dim, r, memory_size, attn_windowing,
|
||||
attn_norm, prenet_type, prenet_dropout, forward_attn,
|
||||
|
@ -290,16 +292,16 @@ class Decoder(nn.Module):
|
|||
# processed_inputs, processed_memory -> |Attention| -> Attention, attention, RNN_State
|
||||
self.attention_rnn = nn.GRUCell(in_features + 128, 256)
|
||||
self.attention_layer = Attention(attention_rnn_dim=256,
|
||||
embedding_dim=in_features,
|
||||
attention_dim=128,
|
||||
location_attention=location_attn,
|
||||
attention_location_n_filters=32,
|
||||
attention_location_kernel_size=31,
|
||||
windowing=attn_windowing,
|
||||
norm=attn_norm,
|
||||
forward_attn=forward_attn,
|
||||
trans_agent=trans_agent,
|
||||
forward_attn_mask=forward_attn_mask)
|
||||
embedding_dim=in_features,
|
||||
attention_dim=128,
|
||||
location_attention=location_attn,
|
||||
attention_location_n_filters=32,
|
||||
attention_location_kernel_size=31,
|
||||
windowing=attn_windowing,
|
||||
norm=attn_norm,
|
||||
forward_attn=forward_attn,
|
||||
trans_agent=trans_agent,
|
||||
forward_attn_mask=forward_attn_mask)
|
||||
# (processed_memory | attention context) -> |Linear| -> decoder_RNN_input
|
||||
self.project_to_decoder_in = nn.Linear(256 + in_features, 256)
|
||||
# decoder_RNN_input -> |RNN| -> RNN_state
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
from math import sqrt
|
||||
import torch
|
||||
from torch.autograd import Variable
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from .common_layers import Attention, Prenet, Linear, LinearBN
|
||||
from .common_layers import Attention, Prenet, Linear
|
||||
|
||||
|
||||
class ConvBNBlock(nn.Module):
|
||||
|
@ -33,7 +32,7 @@ class Postnet(nn.Module):
|
|||
self.convolutions = nn.ModuleList()
|
||||
self.convolutions.append(
|
||||
ConvBNBlock(mel_dim, 512, kernel_size=5, nonlinear='tanh'))
|
||||
for i in range(1, num_convs - 1):
|
||||
for _ in range(1, num_convs - 1):
|
||||
self.convolutions.append(
|
||||
ConvBNBlock(512, 512, kernel_size=5, nonlinear='tanh'))
|
||||
self.convolutions.append(
|
||||
|
@ -95,6 +94,8 @@ class Encoder(nn.Module):
|
|||
|
||||
# adapted from https://github.com/NVIDIA/tacotron2/
|
||||
class Decoder(nn.Module):
|
||||
# Pylint gets confused by PyTorch conventions here
|
||||
#pylint: disable=attribute-defined-outside-init
|
||||
def __init__(self, in_features, inputs_dim, r, attn_win, attn_norm,
|
||||
prenet_type, prenet_dropout, forward_attn, trans_agent,
|
||||
forward_attn_mask, location_attn, separate_stopnet):
|
||||
|
@ -118,15 +119,15 @@ class Decoder(nn.Module):
|
|||
self.attention_rnn = nn.LSTMCell(self.prenet_dim + in_features,
|
||||
self.attention_rnn_dim)
|
||||
|
||||
self.attention_layer = Attention(attention_rnn_dim=self.attention_rnn_dim,
|
||||
self.attention_layer = Attention(attention_rnn_dim=self.attention_rnn_dim,
|
||||
embedding_dim=in_features,
|
||||
attention_dim=128,
|
||||
location_attention=location_attn,
|
||||
attention_dim=128,
|
||||
location_attention=location_attn,
|
||||
attention_location_n_filters=32,
|
||||
attention_location_kernel_size=31,
|
||||
windowing=attn_win,
|
||||
norm=attn_norm,
|
||||
forward_attn=forward_attn,
|
||||
norm=attn_norm,
|
||||
forward_attn=forward_attn,
|
||||
trans_agent=trans_agent,
|
||||
forward_attn_mask=forward_attn_mask)
|
||||
|
||||
|
@ -156,7 +157,7 @@ class Decoder(nn.Module):
|
|||
|
||||
def _init_states(self, inputs, mask, keep_states=False):
|
||||
B = inputs.size(0)
|
||||
T = inputs.size(1)
|
||||
# T = inputs.size(1)
|
||||
|
||||
if not keep_states:
|
||||
self.attention_hidden = self.attention_rnn_init(
|
||||
|
|
|
@ -1,8 +1,6 @@
|
|||
# coding: utf-8
|
||||
import torch
|
||||
from torch import nn
|
||||
from math import sqrt
|
||||
from layers.tacotron import Prenet, Encoder, Decoder, PostCBHG
|
||||
from layers.tacotron import Encoder, Decoder, PostCBHG
|
||||
from utils.generic_utils import sequence_mask
|
||||
|
||||
|
||||
|
|
|
@ -1,8 +1,5 @@
|
|||
from math import sqrt
|
||||
import torch
|
||||
from torch.autograd import Variable
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from layers.tacotron2 import Encoder, Decoder, Postnet
|
||||
from utils.generic_utils import sequence_mask
|
||||
|
||||
|
@ -39,7 +36,8 @@ class Tacotron2(nn.Module):
|
|||
location_attn, separate_stopnet)
|
||||
self.postnet = Postnet(self.n_mel_channels)
|
||||
|
||||
def shape_outputs(self, mel_outputs, mel_outputs_postnet, alignments):
|
||||
@staticmethod
|
||||
def shape_outputs(mel_outputs, mel_outputs_postnet, alignments):
|
||||
mel_outputs = mel_outputs.transpose(1, 2)
|
||||
mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
|
||||
return mel_outputs, mel_outputs_postnet, alignments
|
||||
|
|
|
@ -1,8 +1,6 @@
|
|||
# coding: utf-8
|
||||
import torch
|
||||
from torch import nn
|
||||
from math import sqrt
|
||||
from layers.tacotron import Prenet, Encoder, Decoder, PostCBHG
|
||||
from layers.tacotron import Encoder, Decoder, PostCBHG
|
||||
from layers.gst_layers import GST
|
||||
from utils.generic_utils import sequence_mask
|
||||
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
import argparse
|
||||
from synthesizer import Synthesizer
|
||||
from utils.generic_utils import load_config
|
||||
from flask import Flask, Response, request, render_template, send_file
|
||||
from flask import Flask, request, render_template, send_file
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
|
|
|
@ -5,31 +5,23 @@ import numpy as np
|
|||
import torch
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from models.tacotron import Tacotron
|
||||
from utils.audio import AudioProcessor
|
||||
from utils.generic_utils import load_config, setup_model
|
||||
from utils.text import phoneme_to_sequence, phonemes, symbols, text_to_sequence, sequence_to_phoneme
|
||||
|
||||
import re
|
||||
alphabets= "([A-Za-z])"
|
||||
prefixes = "(Mr|St|Mrs|Ms|Dr)[.]"
|
||||
suffixes = "(Inc|Ltd|Jr|Sr|Co)"
|
||||
starters = "(Mr|Mrs|Ms|Dr|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)"
|
||||
acronyms = "([A-Z][.][A-Z][.](?:[A-Z][.])?)"
|
||||
websites = "[.](com|net|org|io|gov)"
|
||||
alphabets = r"([A-Za-z])"
|
||||
prefixes = r"(Mr|St|Mrs|Ms|Dr)[.]"
|
||||
suffixes = r"(Inc|Ltd|Jr|Sr|Co)"
|
||||
starters = r"(Mr|Mrs|Ms|Dr|He\s|She\s|It\s|They\s|Their\s|Our\s|We\s|But\s|However\s|That\s|This\s|Wherever)"
|
||||
acronyms = r"([A-Z][.][A-Z][.](?:[A-Z][.])?)"
|
||||
websites = r"[.](com|net|org|io|gov)"
|
||||
|
||||
from models.tacotron import Tacotron
|
||||
from utils.audio import AudioProcessor
|
||||
from utils.generic_utils import load_config
|
||||
from utils.text import phoneme_to_sequence, phonemes, symbols, text_to_sequence
|
||||
|
||||
class Synthesizer(object):
|
||||
def __init__(self, config):
|
||||
self.wavernn = None
|
||||
self.config = config
|
||||
self.config = config
|
||||
self.use_cuda = config.use_cuda
|
||||
if self.use_cuda:
|
||||
assert torch.cuda.is_available(), "CUDA is not availabe on this machine."
|
||||
|
@ -52,7 +44,7 @@ class Synthesizer(object):
|
|||
else:
|
||||
self.input_size = len(symbols)
|
||||
self.input_adapter = lambda sen: text_to_sequence(sen, [self.tts_config.text_cleaner])
|
||||
self.tts_model = setup_model(self.input_size, self.tts_config)
|
||||
self.tts_model = setup_model(self.input_size, c=self.tts_config) #FIXME: missing num_speakers argument to setup_model
|
||||
# load model state
|
||||
if use_cuda:
|
||||
cp = torch.load(self.model_file)
|
||||
|
@ -75,18 +67,18 @@ class Synthesizer(object):
|
|||
print(" | > model file: ", model_file)
|
||||
self.wavernn_config = load_config(wavernn_config)
|
||||
self.wavernn = Model(
|
||||
rnn_dims=512,
|
||||
fc_dims=512,
|
||||
mode=self.wavernn_config.mode,
|
||||
pad=2,
|
||||
upsample_factors=self.wavernn_config.upsample_factors, # set this depending on dataset
|
||||
feat_dims=80,
|
||||
compute_dims=128,
|
||||
res_out_dims=128,
|
||||
res_blocks=10,
|
||||
hop_length=self.ap.hop_length,
|
||||
sample_rate=self.ap.sample_rate,
|
||||
).cuda()
|
||||
rnn_dims=512,
|
||||
fc_dims=512,
|
||||
mode=self.wavernn_config.mode,
|
||||
pad=2,
|
||||
upsample_factors=self.wavernn_config.upsample_factors, # set this depending on dataset
|
||||
feat_dims=80,
|
||||
compute_dims=128,
|
||||
res_out_dims=128,
|
||||
res_blocks=10,
|
||||
hop_length=self.ap.hop_length,
|
||||
sample_rate=self.ap.sample_rate,
|
||||
).cuda()
|
||||
|
||||
check = torch.load(model_file)
|
||||
self.wavernn.load_state_dict(check['model'])
|
||||
|
@ -101,25 +93,30 @@ class Synthesizer(object):
|
|||
|
||||
def split_into_sentences(self, text):
|
||||
text = " " + text + " "
|
||||
text = text.replace("\n"," ")
|
||||
text = re.sub(prefixes,"\\1<prd>",text)
|
||||
text = re.sub(websites,"<prd>\\1",text)
|
||||
if "Ph.D" in text: text = text.replace("Ph.D.","Ph<prd>D<prd>")
|
||||
text = re.sub("\s" + alphabets + "[.] "," \\1<prd> ",text)
|
||||
text = re.sub(acronyms+" "+starters,"\\1<stop> \\2",text)
|
||||
text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>\\3<prd>",text)
|
||||
text = re.sub(alphabets + "[.]" + alphabets + "[.]","\\1<prd>\\2<prd>",text)
|
||||
text = re.sub(" "+suffixes+"[.] "+starters," \\1<stop> \\2",text)
|
||||
text = re.sub(" "+suffixes+"[.]"," \\1<prd>",text)
|
||||
text = re.sub(" " + alphabets + "[.]"," \\1<prd>",text)
|
||||
if "”" in text: text = text.replace(".”","”.")
|
||||
if "\"" in text: text = text.replace(".\"","\".")
|
||||
if "!" in text: text = text.replace("!\"","\"!")
|
||||
if "?" in text: text = text.replace("?\"","\"?")
|
||||
text = text.replace(".",".<stop>")
|
||||
text = text.replace("?","?<stop>")
|
||||
text = text.replace("!","!<stop>")
|
||||
text = text.replace("<prd>",".")
|
||||
text = text.replace("\n", " ")
|
||||
text = re.sub(prefixes, "\\1<prd>", text)
|
||||
text = re.sub(websites, "<prd>\\1", text)
|
||||
if "Ph.D" in text:
|
||||
text = text.replace("Ph.D.", "Ph<prd>D<prd>")
|
||||
text = re.sub(r"\s" + alphabets + "[.] ", " \\1<prd> ", text)
|
||||
text = re.sub(acronyms+" "+starters, "\\1<stop> \\2", text)
|
||||
text = re.sub(alphabets + "[.]" + alphabets + "[.]" + alphabets + "[.]", "\\1<prd>\\2<prd>\\3<prd>", text)
|
||||
text = re.sub(alphabets + "[.]" + alphabets + "[.]", "\\1<prd>\\2<prd>", text)
|
||||
text = re.sub(" "+suffixes+"[.] "+starters, " \\1<stop> \\2", text)
|
||||
text = re.sub(" "+suffixes+"[.]", " \\1<prd>", text)
|
||||
text = re.sub(" " + alphabets + "[.]", " \\1<prd>", text)
|
||||
if "”" in text:
|
||||
text = text.replace(".”", "”.")
|
||||
if "\"" in text:
|
||||
text = text.replace(".\"", "\".")
|
||||
if "!" in text:
|
||||
text = text.replace("!\"", "\"!")
|
||||
if "?" in text:
|
||||
text = text.replace("?\"", "\"?")
|
||||
text = text.replace(".", ".<stop>")
|
||||
text = text.replace("?", "?<stop>")
|
||||
text = text.replace("!", "!<stop>")
|
||||
text = text.replace("<prd>", ".")
|
||||
sentences = text.split("<stop>")
|
||||
sentences = sentences[:-1]
|
||||
sentences = [s.strip() for s in sentences]
|
||||
|
@ -128,7 +125,7 @@ class Synthesizer(object):
|
|||
def tts(self, text):
|
||||
wavs = []
|
||||
sens = self.split_into_sentences(text)
|
||||
if len(sens) == 0:
|
||||
if not sens:
|
||||
sens = [text+'.']
|
||||
for sen in sens:
|
||||
if len(sen) < 3:
|
||||
|
|
3
setup.py
3
setup.py
|
@ -5,7 +5,6 @@ import setuptools.command.develop
|
|||
import setuptools.command.build_py
|
||||
import os
|
||||
import subprocess
|
||||
from os.path import exists
|
||||
|
||||
version = '0.0.1'
|
||||
|
||||
|
@ -31,7 +30,6 @@ class build_py(setuptools.command.build_py.build_py):
|
|||
|
||||
@staticmethod
|
||||
def create_version_file():
|
||||
global version, cwd
|
||||
print('-- Building version ' + version)
|
||||
version_path = os.path.join(cwd, 'version.py')
|
||||
with open(version_path, 'w') as f:
|
||||
|
@ -45,7 +43,6 @@ class develop(setuptools.command.develop.develop):
|
|||
|
||||
|
||||
def create_readme_rst():
|
||||
global cwd
|
||||
try:
|
||||
subprocess.check_call(
|
||||
[
|
||||
|
|
|
@ -1 +1 @@
|
|||
print("Python is running!!")
|
||||
print("Python is running!!")
|
||||
|
|
|
@ -2,7 +2,7 @@ import unittest
|
|||
import torch as T
|
||||
|
||||
from utils.generic_utils import save_checkpoint, save_best_model
|
||||
from layers.tacotron import Prenet, CBHG, Decoder, Encoder
|
||||
from layers.tacotron import Prenet
|
||||
|
||||
OUT_PATH = '/tmp/test.pth.tar'
|
||||
|
||||
|
@ -11,14 +11,14 @@ class ModelSavingTests(unittest.TestCase):
|
|||
def save_checkpoint_test(self):
|
||||
# create a dummy model
|
||||
model = Prenet(128, out_features=[256, 128])
|
||||
model = T.nn.DataParallel(layer)
|
||||
model = T.nn.DataParallel(layer) #FIXME: undefined variable layer
|
||||
|
||||
# save the model
|
||||
save_checkpoint(model, None, 100, OUTPATH, 1, 1)
|
||||
save_checkpoint(model, None, 100, OUT_PATH, 1, 1)
|
||||
|
||||
# load the model to CPU
|
||||
model_dict = torch.load(
|
||||
MODEL_PATH, map_location=lambda storage, loc: storage)
|
||||
model_dict = T.load(
|
||||
MODEL_PATH, map_location=lambda storage, loc: storage) #FIXME: undefined variable MODEL_PATH
|
||||
model.load_state_dict(model_dict['model'])
|
||||
|
||||
def save_best_model_test(self):
|
||||
|
@ -27,9 +27,9 @@ class ModelSavingTests(unittest.TestCase):
|
|||
model = T.nn.DataParallel(layer)
|
||||
|
||||
# save the model
|
||||
best_loss = save_best_model(model, None, 0, 100, OUT_PATH, 10, 1)
|
||||
save_best_model(model, None, 0, 100, OUT_PATH, 10, 1)
|
||||
|
||||
# load the model to CPU
|
||||
model_dict = torch.load(
|
||||
model_dict = T.load(
|
||||
MODEL_PATH, map_location=lambda storage, loc: storage)
|
||||
model.load_state_dict(model_dict['model'])
|
||||
|
|
|
@ -1,7 +1,5 @@
|
|||
import os
|
||||
import unittest
|
||||
import numpy as np
|
||||
import torch as T
|
||||
|
||||
from tests import get_tests_path, get_tests_input_path, get_tests_output_path
|
||||
from utils.audio import AudioProcessor
|
||||
|
|
|
@ -19,6 +19,7 @@ class PrenetTests(unittest.TestCase):
|
|||
|
||||
class CBHGTests(unittest.TestCase):
|
||||
def test_in_out(self):
|
||||
#pylint: disable=attribute-defined-outside-init
|
||||
layer = self.cbhg = CBHG(
|
||||
128,
|
||||
K=8,
|
||||
|
@ -38,7 +39,7 @@ class CBHGTests(unittest.TestCase):
|
|||
|
||||
class DecoderTests(unittest.TestCase):
|
||||
def test_in_out(self):
|
||||
layer = Decoder(in_features=256, memory_dim=80, r=2, memory_size=4, attn_windowing=False, attn_norm="sigmoid")
|
||||
layer = Decoder(in_features=256, memory_dim=80, r=2, memory_size=4, attn_windowing=False, attn_norm="sigmoid") #FIXME: several missing required parameters for Decoder ctor
|
||||
dummy_input = T.rand(4, 8, 256)
|
||||
dummy_memory = T.rand(4, 2, 80)
|
||||
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
import os
|
||||
import unittest
|
||||
import shutil
|
||||
import numpy as np
|
||||
|
||||
from torch.utils.data import DataLoader
|
||||
from utils.generic_utils import load_config
|
||||
|
@ -132,7 +131,7 @@ class TestTTSDataset(unittest.TestCase):
|
|||
self.ap.save_wav(wav, OUTPATH + '/mel_inv_dataloader.wav')
|
||||
shutil.copy(item_idx[0], OUTPATH + '/mel_target_dataloader.wav')
|
||||
|
||||
# check linear-spec
|
||||
# check linear-spec
|
||||
linear_spec = linear_input[0].cpu().numpy()
|
||||
wav = self.ap.inv_spectrogram(linear_spec.T)
|
||||
self.ap.save_wav(wav, OUTPATH + '/linear_inv_dataloader.wav')
|
||||
|
|
|
@ -37,7 +37,7 @@ class TacotronTrainTest(unittest.TestCase):
|
|||
|
||||
criterion = MSELossMasked().to(device)
|
||||
criterion_st = nn.BCEWithLogitsLoss().to(device)
|
||||
model = Tacotron2(24, c.r).to(device)
|
||||
model = Tacotron2(24, c.r).to(device) #FIXME: missing num_speakers parameter to Tacotron2 ctor
|
||||
model.train()
|
||||
model_ref = copy.deepcopy(model)
|
||||
count = 0
|
||||
|
|
|
@ -2,7 +2,6 @@ import os
|
|||
import copy
|
||||
import torch
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from torch import optim
|
||||
from torch import nn
|
||||
|
@ -48,7 +47,7 @@ class TacotronTrainTest(unittest.TestCase):
|
|||
linear_dim=c.audio['num_freq'],
|
||||
mel_dim=c.audio['num_mels'],
|
||||
r=c.r,
|
||||
memory_size=c.memory_size).to(device)
|
||||
memory_size=c.memory_size).to(device) #FIXME: missing num_speakers parameter to Tacotron ctor
|
||||
model.train()
|
||||
print(" > Num parameters for Tacotron model:%s"%(count_parameters(model)))
|
||||
model_ref = copy.deepcopy(model)
|
||||
|
@ -58,7 +57,7 @@ class TacotronTrainTest(unittest.TestCase):
|
|||
assert (param - param_ref).sum() == 0, param
|
||||
count += 1
|
||||
optimizer = optim.Adam(model.parameters(), lr=c.lr)
|
||||
for i in range(5):
|
||||
for _ in range(5):
|
||||
mel_out, linear_out, align, stop_tokens = model.forward(
|
||||
input, input_lengths, mel_spec)
|
||||
optimizer.zero_grad()
|
||||
|
@ -77,4 +76,4 @@ class TacotronTrainTest(unittest.TestCase):
|
|||
assert (param != param_ref).any(
|
||||
), "param {} with shape {} not updated!! \n{}\n{}".format(
|
||||
count, param.shape, param, param_ref)
|
||||
count += 1
|
||||
count += 1
|
||||
|
|
|
@ -69,7 +69,6 @@ def test_phoneme_to_sequence():
|
|||
|
||||
def test_text2phone():
|
||||
text = "Recent research at Harvard has shown meditating for as little as 8 weeks can actually increase, the grey matter in the parts of the brain responsible for emotional regulation and learning!"
|
||||
text_cleaner = ["phoneme_cleaners"]
|
||||
gt = "ɹ|iː|s|ə|n|t| |ɹ|ɪ|s|ɜː|tʃ| |æ|t| |h|ɑːɹ|v|ɚ|d| |h|ɐ|z| |ʃ|oʊ|n| |m|ɛ|d|ᵻ|t|eɪ|ɾ|ɪ|ŋ| |f|ɔː|ɹ| |æ|z| |l|ɪ|ɾ|əl| |æ|z| |eɪ|t| |w|iː|k|s| |k|æ|n| |æ|k|tʃ|uː|əl|i|| |ɪ|n|k|ɹ|iː|s|,| |ð|ə| |ɡ|ɹ|eɪ| |m|æ|ɾ|ɚ|ɹ| |ɪ|n|ð|ə| |p|ɑːɹ|t|s| |ʌ|v|ð|ə| |b|ɹ|eɪ|n| |ɹ|ɪ|s|p|ɑː|n|s|ə|b|əl| |f|ɔː|ɹ| |ɪ|m|oʊ|ʃ|ə|n|əl| |ɹ|ɛ|ɡ|j|uː|l|eɪ|ʃ|ə|n||| |æ|n|d| |l|ɜː|n|ɪ|ŋ|!"
|
||||
lang = "en-us"
|
||||
phonemes = text2phone(text, lang)
|
||||
|
|
58
train.py
58
train.py
|
@ -7,7 +7,6 @@ import traceback
|
|||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from tensorboardX import SummaryWriter
|
||||
from torch import optim
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
|
@ -18,9 +17,8 @@ from layers.losses import L1LossMasked, MSELossMasked
|
|||
from utils.audio import AudioProcessor
|
||||
from utils.generic_utils import (NoamLR, check_update, count_parameters,
|
||||
create_experiment_folder, get_git_branch,
|
||||
load_config, lr_decay,
|
||||
remove_experiment_folder, save_best_model,
|
||||
save_checkpoint, sequence_mask, weight_decay,
|
||||
load_config, remove_experiment_folder,
|
||||
save_best_model, save_checkpoint, weight_decay,
|
||||
set_init_dict, copy_config_file, setup_model,
|
||||
split_dataset)
|
||||
from utils.logger import Logger
|
||||
|
@ -87,7 +85,7 @@ def setup_loader(is_val=False, verbose=False):
|
|||
|
||||
def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
||||
ap, epoch):
|
||||
data_loader = setup_loader(is_val=False, verbose=(epoch==0))
|
||||
data_loader = setup_loader(is_val=False, verbose=(epoch == 0))
|
||||
if c.use_speaker_embedding:
|
||||
speaker_mapping = load_speaker_mapping(OUT_PATH)
|
||||
model.train()
|
||||
|
@ -131,7 +129,8 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
if c.lr_decay:
|
||||
scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
if optimizer_st: optimizer_st.zero_grad();
|
||||
if optimizer_st:
|
||||
optimizer_st.zero_grad()
|
||||
|
||||
# dispatch data to GPU
|
||||
if use_cuda:
|
||||
|
@ -146,7 +145,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
|
||||
# forward pass model
|
||||
decoder_output, postnet_output, alignments, stop_tokens = model(
|
||||
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
|
||||
text_input, text_lengths, mel_input, speaker_ids=speaker_ids)
|
||||
|
||||
# loss computation
|
||||
stop_loss = criterion_st(stop_tokens, stop_targets) if c.stopnet else torch.zeros(1)
|
||||
|
@ -203,16 +202,16 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
if args.rank == 0:
|
||||
avg_postnet_loss += float(postnet_loss.item())
|
||||
avg_decoder_loss += float(decoder_loss.item())
|
||||
avg_stop_loss += stop_loss if type(stop_loss) is float else float(stop_loss.item())
|
||||
avg_stop_loss += stop_loss if isinstance(stop_loss, float) else float(stop_loss.item())
|
||||
avg_step_time += step_time
|
||||
|
||||
# Plot Training Iter Stats
|
||||
iter_stats = {"loss_posnet": postnet_loss.item(),
|
||||
"loss_decoder": decoder_loss.item(),
|
||||
"lr": current_lr,
|
||||
"grad_norm": grad_norm,
|
||||
"grad_norm_st": grad_norm_st,
|
||||
"step_time": step_time}
|
||||
"loss_decoder": decoder_loss.item(),
|
||||
"lr": current_lr,
|
||||
"grad_norm": grad_norm,
|
||||
"grad_norm_st": grad_norm_st,
|
||||
"step_time": step_time}
|
||||
tb_logger.tb_train_iter_stats(current_step, iter_stats)
|
||||
|
||||
if current_step % c.save_step == 0:
|
||||
|
@ -224,7 +223,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
|
||||
# Diagnostic visualizations
|
||||
const_spec = postnet_output[0].data.cpu().numpy()
|
||||
gt_spec = linear_input[0].data.cpu().numpy() if c.model in ["Tacotron", "TacotronGST"] else mel_input[0].data.cpu().numpy()
|
||||
gt_spec = linear_input[0].data.cpu().numpy() if c.model in ["Tacotron", "TacotronGST"] else mel_input[0].data.cpu().numpy()
|
||||
align_img = alignments[0].data.cpu().numpy()
|
||||
|
||||
figures = {
|
||||
|
@ -239,9 +238,9 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
train_audio = ap.inv_spectrogram(const_spec.T)
|
||||
else:
|
||||
train_audio = ap.inv_mel_spectrogram(const_spec.T)
|
||||
tb_logger.tb_train_audios(current_step,
|
||||
{'TrainAudio': train_audio},
|
||||
c.audio["sample_rate"])
|
||||
tb_logger.tb_train_audios(current_step,
|
||||
{'TrainAudio': train_audio},
|
||||
c.audio["sample_rate"])
|
||||
|
||||
avg_postnet_loss /= (num_iter + 1)
|
||||
avg_decoder_loss /= (num_iter + 1)
|
||||
|
@ -263,9 +262,9 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
if args.rank == 0:
|
||||
# Plot Training Epoch Stats
|
||||
epoch_stats = {"loss_postnet": avg_postnet_loss,
|
||||
"loss_decoder": avg_decoder_loss,
|
||||
"stop_loss": avg_stop_loss,
|
||||
"epoch_time": epoch_time}
|
||||
"loss_decoder": avg_decoder_loss,
|
||||
"stop_loss": avg_stop_loss,
|
||||
"epoch_time": epoch_time}
|
||||
tb_logger.tb_train_epoch_stats(current_step, epoch_stats)
|
||||
if c.tb_model_param_stats:
|
||||
tb_logger.tb_model_weights(model, current_step)
|
||||
|
@ -402,8 +401,8 @@ def evaluate(model, criterion, criterion_st, ap, current_step, epoch):
|
|||
|
||||
# Plot Validation Stats
|
||||
epoch_stats = {"loss_postnet": avg_postnet_loss,
|
||||
"loss_decoder": avg_decoder_loss,
|
||||
"stop_loss": avg_stop_loss}
|
||||
"loss_decoder": avg_decoder_loss,
|
||||
"stop_loss": avg_stop_loss}
|
||||
tb_logger.tb_eval_stats(current_step, epoch_stats)
|
||||
|
||||
if args.rank == 0 and epoch > c.test_delay_epochs:
|
||||
|
@ -420,7 +419,7 @@ def evaluate(model, criterion, criterion_st, ap, current_step, epoch):
|
|||
file_path = os.path.join(AUDIO_PATH, str(current_step))
|
||||
os.makedirs(file_path, exist_ok=True)
|
||||
file_path = os.path.join(file_path,
|
||||
"TestSentence_{}.wav".format(idx))
|
||||
"TestSentence_{}.wav".format(idx))
|
||||
ap.save_wav(wav, file_path)
|
||||
test_audios['{}-audio'.format(idx)] = wav
|
||||
test_figures['{}-prediction'.format(idx)] = plot_spectrogram(postnet_output, ap)
|
||||
|
@ -482,12 +481,11 @@ def main(args):
|
|||
# TODO: fix optimizer init, model.cuda() needs to be called before
|
||||
# optimizer restore
|
||||
# optimizer.load_state_dict(checkpoint['optimizer'])
|
||||
if len(c.reinit_layers) > 0:
|
||||
if c.reinit_layers:
|
||||
raise RuntimeError
|
||||
model.load_state_dict(checkpoint['model'])
|
||||
except:
|
||||
print(" > Partial model initialization.")
|
||||
partial_init_flag = True
|
||||
model_dict = model.state_dict()
|
||||
model_dict = set_init_dict(model_dict, checkpoint, c)
|
||||
model.load_state_dict(model_dict)
|
||||
|
@ -496,7 +494,6 @@ def main(args):
|
|||
group['lr'] = c.lr
|
||||
print(
|
||||
" > Model restored from step %d" % checkpoint['step'], flush=True)
|
||||
start_epoch = checkpoint['epoch']
|
||||
args.restore_step = checkpoint['step']
|
||||
else:
|
||||
args.restore_step = 0
|
||||
|
@ -504,7 +501,8 @@ def main(args):
|
|||
if use_cuda:
|
||||
model = model.cuda()
|
||||
criterion.cuda()
|
||||
if criterion_st: criterion_st.cuda();
|
||||
if criterion_st:
|
||||
criterion_st.cuda()
|
||||
|
||||
# DISTRUBUTED
|
||||
if num_gpus > 1:
|
||||
|
@ -615,7 +613,7 @@ if __name__ == '__main__':
|
|||
os.chmod(AUDIO_PATH, 0o775)
|
||||
os.chmod(OUT_PATH, 0o775)
|
||||
|
||||
if args.rank==0:
|
||||
if args.rank == 0:
|
||||
LOG_DIR = OUT_PATH
|
||||
tb_logger = Logger(LOG_DIR)
|
||||
|
||||
|
@ -629,8 +627,8 @@ if __name__ == '__main__':
|
|||
try:
|
||||
sys.exit(0)
|
||||
except SystemExit:
|
||||
os._exit(0)
|
||||
except Exception:
|
||||
os._exit(0) #pylint: disable=protected-access
|
||||
except Exception: #pylint: disable=broad-except
|
||||
remove_experiment_folder(OUT_PATH)
|
||||
traceback.print_exc()
|
||||
sys.exit(1)
|
||||
|
|
|
@ -1,11 +1,8 @@
|
|||
import os
|
||||
import librosa
|
||||
import soundfile as sf
|
||||
import pickle
|
||||
import copy
|
||||
import numpy as np
|
||||
from pprint import pprint
|
||||
from scipy import signal, io
|
||||
import scipy.io
|
||||
import scipy.signal
|
||||
|
||||
|
||||
class AudioProcessor(object):
|
||||
|
@ -27,7 +24,7 @@ class AudioProcessor(object):
|
|||
clip_norm=True,
|
||||
griffin_lim_iters=None,
|
||||
do_trim_silence=False,
|
||||
**kwargs):
|
||||
**_):
|
||||
|
||||
print(" > Setting up Audio Processor...")
|
||||
|
||||
|
@ -55,7 +52,7 @@ class AudioProcessor(object):
|
|||
|
||||
def save_wav(self, wav, path):
|
||||
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
||||
io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16))
|
||||
scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16))
|
||||
|
||||
def _linear_to_mel(self, spectrogram):
|
||||
_mel_basis = self._build_mel_basis()
|
||||
|
@ -78,11 +75,12 @@ class AudioProcessor(object):
|
|||
|
||||
def _normalize(self, S):
|
||||
"""Put values in [0, self.max_norm] or [-self.max_norm, self.max_norm]"""
|
||||
#pylint: disable=no-else-return
|
||||
if self.signal_norm:
|
||||
S_norm = ((S - self.min_level_db) / - self.min_level_db)
|
||||
if self.symmetric_norm:
|
||||
S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
|
||||
if self.clip_norm :
|
||||
if self.clip_norm:
|
||||
S_norm = np.clip(S_norm, -self.max_norm, self.max_norm)
|
||||
return S_norm
|
||||
else:
|
||||
|
@ -95,18 +93,19 @@ class AudioProcessor(object):
|
|||
|
||||
def _denormalize(self, S):
|
||||
"""denormalize values"""
|
||||
#pylint: disable=no-else-return
|
||||
S_denorm = S
|
||||
if self.signal_norm:
|
||||
if self.symmetric_norm:
|
||||
if self.clip_norm:
|
||||
S_denorm = np.clip(S_denorm, -self.max_norm, self.max_norm)
|
||||
S_denorm = np.clip(S_denorm, -self.max_norm, self.max_norm)
|
||||
S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db
|
||||
return S_denorm
|
||||
else:
|
||||
if self.clip_norm:
|
||||
S_denorm = np.clip(S_denorm, 0, self.max_norm)
|
||||
S_denorm = (S_denorm * -self.min_level_db /
|
||||
self.max_norm) + self.min_level_db
|
||||
self.max_norm) + self.min_level_db
|
||||
return S_denorm
|
||||
else:
|
||||
return S
|
||||
|
@ -122,18 +121,19 @@ class AudioProcessor(object):
|
|||
min_level = np.exp(self.min_level_db / 20 * np.log(10))
|
||||
return 20 * np.log10(np.maximum(min_level, x))
|
||||
|
||||
def _db_to_amp(self, x):
|
||||
@staticmethod
|
||||
def _db_to_amp(x):
|
||||
return np.power(10.0, x * 0.05)
|
||||
|
||||
def apply_preemphasis(self, x):
|
||||
if self.preemphasis == 0:
|
||||
raise RuntimeError(" !! Preemphasis is applied with factor 0.0. ")
|
||||
return signal.lfilter([1, -self.preemphasis], [1], x)
|
||||
return scipy.signal.lfilter([1, -self.preemphasis], [1], x)
|
||||
|
||||
def apply_inv_preemphasis(self, x):
|
||||
if self.preemphasis == 0:
|
||||
raise RuntimeError(" !! Preemphasis is applied with factor 0.0. ")
|
||||
return signal.lfilter([1], [1, -self.preemphasis], x)
|
||||
return scipy.signal.lfilter([1], [1, -self.preemphasis], x)
|
||||
|
||||
def spectrogram(self, y):
|
||||
if self.preemphasis != 0:
|
||||
|
@ -158,8 +158,7 @@ class AudioProcessor(object):
|
|||
# Reconstruct phase
|
||||
if self.preemphasis != 0:
|
||||
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
|
||||
else:
|
||||
return self._griffin_lim(S**self.power)
|
||||
return self._griffin_lim(S**self.power)
|
||||
|
||||
def inv_mel_spectrogram(self, mel_spectrogram):
|
||||
'''Converts mel spectrogram to waveform using librosa'''
|
||||
|
@ -168,12 +167,11 @@ class AudioProcessor(object):
|
|||
S = self._mel_to_linear(S) # Convert back to linear
|
||||
if self.preemphasis != 0:
|
||||
return self.apply_inv_preemphasis(self._griffin_lim(S**self.power))
|
||||
else:
|
||||
return self._griffin_lim(S**self.power)
|
||||
return self._griffin_lim(S**self.power)
|
||||
|
||||
def out_linear_to_mel(self, linear_spec):
|
||||
S = self._denormalize(linear_spec)
|
||||
S = self._db_to_amp(S + self.ref_level_db)
|
||||
S = self._db_to_amp(S + self.ref_level_db)
|
||||
S = self._linear_to_mel(np.abs(S))
|
||||
S = self._amp_to_db(S) - self.ref_level_db
|
||||
mel = self._normalize(S)
|
||||
|
@ -183,7 +181,7 @@ class AudioProcessor(object):
|
|||
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
|
||||
S_complex = np.abs(S).astype(np.complex)
|
||||
y = self._istft(S_complex * angles)
|
||||
for i in range(self.griffin_lim_iters):
|
||||
for _ in range(self.griffin_lim_iters):
|
||||
angles = np.exp(1j * np.angle(self._stft(y)))
|
||||
y = self._istft(S_complex * angles)
|
||||
return y
|
||||
|
@ -240,16 +238,19 @@ class AudioProcessor(object):
|
|||
if self.do_trim_silence:
|
||||
try:
|
||||
x = self.trim_silence(x)
|
||||
except ValueError as e:
|
||||
except ValueError:
|
||||
print(f' [!] File cannot be trimmed for silence - {filename}')
|
||||
assert self.sample_rate == sr, "%s vs %s"%(self.sample_rate, sr)
|
||||
return x
|
||||
|
||||
def encode_16bits(self, x):
|
||||
@staticmethod
|
||||
def encode_16bits(x):
|
||||
return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16)
|
||||
|
||||
def quantize(self, x, bits):
|
||||
@staticmethod
|
||||
def quantize(x, bits):
|
||||
return (x + 1.) * (2**bits - 1) / 2
|
||||
|
||||
def dequantize(self, x, bits):
|
||||
@staticmethod
|
||||
def dequantize(x, bits):
|
||||
return 2 * x / (2**bits - 1) - 1
|
||||
|
|
|
@ -45,7 +45,6 @@ def prepare_stop_target(inputs, out_steps):
|
|||
|
||||
|
||||
def pad_per_step(inputs, pad_len):
|
||||
timesteps = inputs.shape[-1]
|
||||
return np.pad(
|
||||
inputs, [[0, 0], [0, 0], [0, pad_len]],
|
||||
mode='constant',
|
||||
|
|
|
@ -1,8 +1,6 @@
|
|||
import os
|
||||
import re
|
||||
import sys
|
||||
import glob
|
||||
import time
|
||||
import shutil
|
||||
import datetime
|
||||
import json
|
||||
|
@ -11,8 +9,6 @@ import subprocess
|
|||
import importlib
|
||||
import numpy as np
|
||||
from collections import OrderedDict, Counter
|
||||
from torch.autograd import Variable
|
||||
from utils.text import text_to_sequence
|
||||
|
||||
|
||||
class AttrDict(dict):
|
||||
|
@ -78,7 +74,7 @@ def remove_experiment_folder(experiment_path):
|
|||
"""Check folder if there is a checkpoint, otherwise remove the folder"""
|
||||
|
||||
checkpoint_files = glob.glob(experiment_path + "/*.pth.tar")
|
||||
if len(checkpoint_files) < 1:
|
||||
if not checkpoint_files:
|
||||
if os.path.exists(experiment_path):
|
||||
shutil.rmtree(experiment_path)
|
||||
print(" ! Run is removed from {}".format(experiment_path))
|
||||
|
@ -87,7 +83,6 @@ def remove_experiment_folder(experiment_path):
|
|||
|
||||
|
||||
def copy_config_file(config_file, out_path, new_fields):
|
||||
config_name = os.path.basename(config_file)
|
||||
config_lines = open(config_file, "r").readlines()
|
||||
# add extra information fields
|
||||
for key, value in new_fields.items():
|
||||
|
|
|
@ -46,7 +46,7 @@ class Logger(object):
|
|||
|
||||
def tb_train_iter_stats(self, step, stats):
|
||||
self.dict_to_tb_scalar("TrainIterStats", stats, step)
|
||||
|
||||
|
||||
def tb_train_epoch_stats(self, step, stats):
|
||||
self.dict_to_tb_scalar("TrainEpochStats", stats, step)
|
||||
|
||||
|
@ -64,12 +64,9 @@ class Logger(object):
|
|||
|
||||
def tb_eval_audios(self, step, audios, sample_rate):
|
||||
self.dict_to_tb_audios("EvalAudios", audios, step, sample_rate)
|
||||
|
||||
|
||||
def tb_test_audios(self, step, audios, sample_rate):
|
||||
self.dict_to_tb_audios("TestAudios", audios, step, sample_rate)
|
||||
|
||||
def tb_test_figures(self, step, figures):
|
||||
self.dict_to_tb_figure("TestFigures", figures, step)
|
||||
|
||||
|
||||
|
|
@ -1,11 +1,6 @@
|
|||
import io
|
||||
import time
|
||||
import librosa
|
||||
import torch
|
||||
import numpy as np
|
||||
from .text import text_to_sequence, phoneme_to_sequence, sequence_to_phoneme
|
||||
from .visual import visualize
|
||||
from matplotlib import pylab as plt
|
||||
from .text import text_to_sequence, phoneme_to_sequence
|
||||
|
||||
|
||||
def text_to_seqvec(text, CONFIG, use_cuda):
|
||||
|
@ -31,8 +26,7 @@ def compute_style_mel(style_wav, ap, use_cuda):
|
|||
ap.load_wav(style_wav))).unsqueeze(0)
|
||||
if use_cuda:
|
||||
return style_mel.cuda()
|
||||
else:
|
||||
return style_mel
|
||||
return style_mel
|
||||
|
||||
|
||||
def run_model(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None):
|
||||
|
@ -84,7 +78,7 @@ def synthesis(model,
|
|||
style_wav=None,
|
||||
truncated=False,
|
||||
enable_eos_bos_chars=False,
|
||||
trim_silence=False):
|
||||
do_trim_silence=False):
|
||||
"""Synthesize voice for the given text.
|
||||
|
||||
Args:
|
||||
|
@ -99,7 +93,7 @@ def synthesis(model,
|
|||
truncated (bool): keep model states after inference. It can be used
|
||||
for continuous inference at long texts.
|
||||
enable_eos_bos_chars (bool): enable special chars for end of sentence and start of sentence.
|
||||
trim_silence (bool): trim silence after synthesis.
|
||||
do_trim_silence (bool): trim silence after synthesis.
|
||||
"""
|
||||
# GST processing
|
||||
style_mel = None
|
||||
|
@ -119,6 +113,6 @@ def synthesis(model,
|
|||
# plot results
|
||||
wav = inv_spectrogram(postnet_output, ap, CONFIG)
|
||||
# trim silence
|
||||
if trim_silence:
|
||||
if do_trim_silence:
|
||||
wav = trim_silence(wav)
|
||||
return wav, alignment, decoder_output, postnet_output, stop_tokens
|
||||
|
|
|
@ -7,17 +7,17 @@ from utils.text import cleaners
|
|||
from utils.text.symbols import symbols, phonemes, _phoneme_punctuations
|
||||
|
||||
# Mappings from symbol to numeric ID and vice versa:
|
||||
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||
_id_to_symbol = {i: s for i, s in enumerate(symbols)}
|
||||
_SYMBOL_TO_ID = {s: i for i, s in enumerate(symbols)}
|
||||
_ID_TO_SYMBOL = {i: s for i, s in enumerate(symbols)}
|
||||
|
||||
_phonemes_to_id = {s: i for i, s in enumerate(phonemes)}
|
||||
_id_to_phonemes = {i: s for i, s in enumerate(phonemes)}
|
||||
_PHONEMES_TO_ID = {s: i for i, s in enumerate(phonemes)}
|
||||
_ID_TO_PHONEMES = {i: s for i, s in enumerate(phonemes)}
|
||||
|
||||
# Regular expression matching text enclosed in curly braces:
|
||||
_curly_re = re.compile(r'(.*?)\{(.+?)\}(.*)')
|
||||
_CURLY_RE = re.compile(r'(.*?)\{(.+?)\}(.*)')
|
||||
|
||||
# Regular expression matchinf punctuations, ignoring empty space
|
||||
pat = r'['+_phoneme_punctuations+']+'
|
||||
PHONEME_PUNCTUATION_PATTERN = r'['+_phoneme_punctuations+']+'
|
||||
|
||||
|
||||
def text2phone(text, language):
|
||||
|
@ -26,11 +26,11 @@ def text2phone(text, language):
|
|||
'''
|
||||
seperator = phonemizer.separator.Separator(' |', '', '|')
|
||||
#try:
|
||||
punctuations = re.findall(pat, text)
|
||||
punctuations = re.findall(PHONEME_PUNCTUATION_PATTERN, text)
|
||||
ph = phonemize(text, separator=seperator, strip=False, njobs=1, backend='espeak', language=language)
|
||||
ph = ph[:-1].strip() # skip the last empty character
|
||||
# Replace \n with matching punctuations.
|
||||
if len(punctuations) > 0:
|
||||
if punctuations:
|
||||
# if text ends with a punctuation.
|
||||
if text[-1] == punctuations[-1]:
|
||||
for punct in punctuations[:-1]:
|
||||
|
@ -47,20 +47,20 @@ def text2phone(text, language):
|
|||
|
||||
def phoneme_to_sequence(text, cleaner_names, language, enable_eos_bos=False):
|
||||
if enable_eos_bos:
|
||||
sequence = [_phonemes_to_id['^']]
|
||||
sequence = [_PHONEMES_TO_ID['^']]
|
||||
else:
|
||||
sequence = []
|
||||
text = text.replace(":", "")
|
||||
clean_text = _clean_text(text, cleaner_names)
|
||||
phonemes = text2phone(clean_text, language)
|
||||
if phonemes is None:
|
||||
to_phonemes = text2phone(clean_text, language)
|
||||
if to_phonemes is None:
|
||||
print("!! After phoneme conversion the result is None. -- {} ".format(clean_text))
|
||||
# iterate by skipping empty strings - NOTE: might be useful to keep it to have a better intonation.
|
||||
for phoneme in filter(None, phonemes.split('|')):
|
||||
for phoneme in filter(None, to_phonemes.split('|')):
|
||||
sequence += _phoneme_to_sequence(phoneme)
|
||||
# Append EOS char
|
||||
if enable_eos_bos:
|
||||
sequence.append(_phonemes_to_id['~'])
|
||||
sequence.append(_PHONEMES_TO_ID['~'])
|
||||
return sequence
|
||||
|
||||
|
||||
|
@ -68,8 +68,8 @@ def sequence_to_phoneme(sequence):
|
|||
'''Converts a sequence of IDs back to a string'''
|
||||
result = ''
|
||||
for symbol_id in sequence:
|
||||
if symbol_id in _id_to_phonemes:
|
||||
s = _id_to_phonemes[symbol_id]
|
||||
if symbol_id in _ID_TO_PHONEMES:
|
||||
s = _ID_TO_PHONEMES[symbol_id]
|
||||
result += s
|
||||
return result.replace('}{', ' ')
|
||||
|
||||
|
@ -89,8 +89,8 @@ def text_to_sequence(text, cleaner_names):
|
|||
'''
|
||||
sequence = []
|
||||
# Check for curly braces and treat their contents as ARPAbet:
|
||||
while len(text):
|
||||
m = _curly_re.match(text)
|
||||
while text:
|
||||
m = _CURLY_RE.match(text)
|
||||
if not m:
|
||||
sequence += _symbols_to_sequence(_clean_text(text, cleaner_names))
|
||||
break
|
||||
|
@ -105,8 +105,8 @@ def sequence_to_text(sequence):
|
|||
'''Converts a sequence of IDs back to a string'''
|
||||
result = ''
|
||||
for symbol_id in sequence:
|
||||
if symbol_id in _id_to_symbol:
|
||||
s = _id_to_symbol[symbol_id]
|
||||
if symbol_id in _ID_TO_SYMBOL:
|
||||
s = _ID_TO_SYMBOL[symbol_id]
|
||||
# Enclose ARPAbet back in curly braces:
|
||||
if len(s) > 1 and s[0] == '@':
|
||||
s = '{%s}' % s[1:]
|
||||
|
@ -123,12 +123,12 @@ def _clean_text(text, cleaner_names):
|
|||
return text
|
||||
|
||||
|
||||
def _symbols_to_sequence(symbols):
|
||||
return [_symbol_to_id[s] for s in symbols if _should_keep_symbol(s)]
|
||||
def _symbols_to_sequence(syms):
|
||||
return [_SYMBOL_TO_ID[s] for s in syms if _should_keep_symbol(s)]
|
||||
|
||||
|
||||
def _phoneme_to_sequence(phonemes):
|
||||
return [_phonemes_to_id[s] for s in list(phonemes) if _should_keep_phoneme(s)]
|
||||
def _phoneme_to_sequence(phons):
|
||||
return [_PHONEMES_TO_ID[s] for s in list(phons) if _should_keep_phoneme(s)]
|
||||
|
||||
|
||||
def _arpabet_to_sequence(text):
|
||||
|
@ -136,8 +136,8 @@ def _arpabet_to_sequence(text):
|
|||
|
||||
|
||||
def _should_keep_symbol(s):
|
||||
return s in _symbol_to_id and s not in ['~', '^', '_']
|
||||
return s in _SYMBOL_TO_ID and s not in ['~', '^', '_']
|
||||
|
||||
|
||||
def _should_keep_phoneme(p):
|
||||
return p in _phonemes_to_id and p not in ['~', '^', '_']
|
||||
return p in _PHONEMES_TO_ID and p not in ['~', '^', '_']
|
||||
|
|
|
@ -2,16 +2,16 @@
|
|||
|
||||
import re
|
||||
|
||||
# valid_symbols = [
|
||||
# 'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1',
|
||||
# 'AH2', 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0',
|
||||
# 'AY1', 'AY2', 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0',
|
||||
# 'ER1', 'ER2', 'EY', 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0',
|
||||
# 'IH1', 'IH2', 'IY', 'IY0', 'IY1', 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG',
|
||||
# 'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0', 'OY1', 'OY2', 'P', 'R', 'S', 'SH',
|
||||
# 'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W',
|
||||
# 'Y', 'Z', 'ZH'
|
||||
# ]
|
||||
VALID_SYMBOLS = [
|
||||
'AA', 'AA0', 'AA1', 'AA2', 'AE', 'AE0', 'AE1', 'AE2', 'AH', 'AH0', 'AH1',
|
||||
'AH2', 'AO', 'AO0', 'AO1', 'AO2', 'AW', 'AW0', 'AW1', 'AW2', 'AY', 'AY0',
|
||||
'AY1', 'AY2', 'B', 'CH', 'D', 'DH', 'EH', 'EH0', 'EH1', 'EH2', 'ER', 'ER0',
|
||||
'ER1', 'ER2', 'EY', 'EY0', 'EY1', 'EY2', 'F', 'G', 'HH', 'IH', 'IH0',
|
||||
'IH1', 'IH2', 'IY', 'IY0', 'IY1', 'IY2', 'JH', 'K', 'L', 'M', 'N', 'NG',
|
||||
'OW', 'OW0', 'OW1', 'OW2', 'OY', 'OY0', 'OY1', 'OY2', 'P', 'R', 'S', 'SH',
|
||||
'T', 'TH', 'UH', 'UH0', 'UH1', 'UH2', 'UW', 'UW0', 'UW1', 'UW2', 'V', 'W',
|
||||
'Y', 'Z', 'ZH'
|
||||
]
|
||||
|
||||
|
||||
class CMUDict:
|
||||
|
@ -37,19 +37,19 @@ class CMUDict:
|
|||
'''Returns list of ARPAbet pronunciations of the given word.'''
|
||||
return self._entries.get(word.upper())
|
||||
|
||||
def get_arpabet(self, word, cmudict, punctuation_symbols):
|
||||
@staticmethod
|
||||
def get_arpabet(word, cmudict, punctuation_symbols):
|
||||
first_symbol, last_symbol = '', ''
|
||||
if len(word) > 0 and word[0] in punctuation_symbols:
|
||||
if word and word[0] in punctuation_symbols:
|
||||
first_symbol = word[0]
|
||||
word = word[1:]
|
||||
if len(word) > 0 and word[-1] in punctuation_symbols:
|
||||
if word and word[-1] in punctuation_symbols:
|
||||
last_symbol = word[-1]
|
||||
word = word[:-1]
|
||||
arpabet = cmudict.lookup(word)
|
||||
if arpabet is not None:
|
||||
return first_symbol + '{%s}' % arpabet[0] + last_symbol
|
||||
else:
|
||||
return first_symbol + word + last_symbol
|
||||
return first_symbol + word + last_symbol
|
||||
|
||||
|
||||
_alt_re = re.compile(r'\([0-9]+\)')
|
||||
|
@ -58,7 +58,7 @@ _alt_re = re.compile(r'\([0-9]+\)')
|
|||
def _parse_cmudict(file):
|
||||
cmudict = {}
|
||||
for line in file:
|
||||
if len(line) and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
|
||||
if line and (line[0] >= 'A' and line[0] <= 'Z' or line[0] == "'"):
|
||||
parts = line.split(' ')
|
||||
word = re.sub(_alt_re, '', parts[0])
|
||||
pronunciation = _get_pronunciation(parts[1])
|
||||
|
@ -73,6 +73,6 @@ def _parse_cmudict(file):
|
|||
def _get_pronunciation(s):
|
||||
parts = s.strip().split(' ')
|
||||
for part in parts:
|
||||
if part not in _valid_symbol_set:
|
||||
if part not in VALID_SYMBOLS:
|
||||
return None
|
||||
return ' '.join(parts)
|
||||
|
|
|
@ -66,14 +66,13 @@ def _expand_dollars(m):
|
|||
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||
return '%s %s, %s %s' % (dollars, dollar_unit, cents, cent_unit)
|
||||
elif dollars:
|
||||
if dollars:
|
||||
dollar_unit = 'dollar' if dollars == 1 else 'dollars'
|
||||
return '%s %s' % (dollars, dollar_unit)
|
||||
elif cents:
|
||||
if cents:
|
||||
cent_unit = 'cent' if cents == 1 else 'cents'
|
||||
return '%s %s' % (cents, cent_unit)
|
||||
else:
|
||||
return 'zero dollars'
|
||||
return 'zero dollars'
|
||||
|
||||
|
||||
def _standard_number_to_words(n, digit_group):
|
||||
|
@ -99,12 +98,11 @@ def _number_to_words(n):
|
|||
# Handle special cases first, then go to the standard case:
|
||||
if n >= 1000000000000000000:
|
||||
return str(n) # Too large, just return the digits
|
||||
elif n == 0:
|
||||
if n == 0:
|
||||
return 'zero'
|
||||
elif n % 100 == 0 and n % 1000 != 0 and n < 3000:
|
||||
if n % 100 == 0 and n % 1000 != 0 and n < 3000:
|
||||
return _standard_number_to_words(n // 100, 0) + ' hundred'
|
||||
else:
|
||||
return _standard_number_to_words(n, 0)
|
||||
return _standard_number_to_words(n, 0)
|
||||
|
||||
|
||||
def _expand_number(m):
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import numpy as np
|
||||
import librosa
|
||||
import matplotlib
|
||||
matplotlib.use('Agg')
|
||||
|
@ -49,7 +48,7 @@ def visualize(alignment, spectrogram_postnet, stop_tokens, text, hop_length, CON
|
|||
print(text)
|
||||
plt.yticks(range(len(text)), list(text))
|
||||
plt.colorbar()
|
||||
|
||||
|
||||
stop_tokens = stop_tokens.squeeze().detach().to('cpu').numpy()
|
||||
plt.subplot(num_plot, 1, 2)
|
||||
plt.plot(range(len(stop_tokens)), list(stop_tokens))
|
||||
|
@ -65,12 +64,12 @@ def visualize(alignment, spectrogram_postnet, stop_tokens, text, hop_length, CON
|
|||
if spectrogram is not None:
|
||||
plt.subplot(num_plot, 1, 4)
|
||||
librosa.display.specshow(spectrogram.T, sr=CONFIG.audio['sample_rate'],
|
||||
hop_length=hop_length, x_axis="time", y_axis="linear")
|
||||
hop_length=hop_length, x_axis="time", y_axis="linear")
|
||||
plt.xlabel("Time", fontsize=label_fontsize)
|
||||
plt.ylabel("Hz", fontsize=label_fontsize)
|
||||
plt.tight_layout()
|
||||
plt.colorbar()
|
||||
|
||||
|
||||
if output_path:
|
||||
print(output_path)
|
||||
fig.savefig(output_path)
|
||||
|
|
Loading…
Reference in New Issue