mirror of https://github.com/coqui-ai/TTS.git
Add remove silence VAD script
parent
1bd1a0546b
commit
10ff90d6d2
|
@ -0,0 +1,213 @@
|
|||
# This code is adpated from: https://github.com/wiseman/py-webrtcvad/blob/master/example.py
|
||||
import os
|
||||
import tqdm
|
||||
import glob
|
||||
import argparse
|
||||
import pathlib
|
||||
|
||||
import collections
|
||||
import contextlib
|
||||
import sys
|
||||
import wave
|
||||
import numpy as np
|
||||
import webrtcvad
|
||||
from tqdm.contrib.concurrent import process_map
|
||||
import multiprocessing
|
||||
from itertools import chain
|
||||
|
||||
def read_wave(path):
|
||||
"""Reads a .wav file.
|
||||
|
||||
Takes the path, and returns (PCM audio data, sample rate).
|
||||
"""
|
||||
with contextlib.closing(wave.open(path, 'rb')) as wf:
|
||||
num_channels = wf.getnchannels()
|
||||
assert num_channels == 1
|
||||
sample_width = wf.getsampwidth()
|
||||
assert sample_width == 2
|
||||
sample_rate = wf.getframerate()
|
||||
assert sample_rate in (8000, 16000, 32000, 48000)
|
||||
pcm_data = wf.readframes(wf.getnframes())
|
||||
return pcm_data, sample_rate
|
||||
|
||||
|
||||
def write_wave(path, audio, sample_rate):
|
||||
"""Writes a .wav file.
|
||||
|
||||
Takes path, PCM audio data, and sample rate.
|
||||
"""
|
||||
with contextlib.closing(wave.open(path, 'wb')) as wf:
|
||||
wf.setnchannels(1)
|
||||
wf.setsampwidth(2)
|
||||
wf.setframerate(sample_rate)
|
||||
wf.writeframes(audio)
|
||||
|
||||
|
||||
class Frame(object):
|
||||
"""Represents a "frame" of audio data."""
|
||||
def __init__(self, bytes, timestamp, duration):
|
||||
self.bytes = bytes
|
||||
self.timestamp = timestamp
|
||||
self.duration = duration
|
||||
|
||||
|
||||
def frame_generator(frame_duration_ms, audio, sample_rate):
|
||||
"""Generates audio frames from PCM audio data.
|
||||
|
||||
Takes the desired frame duration in milliseconds, the PCM data, and
|
||||
the sample rate.
|
||||
|
||||
Yields Frames of the requested duration.
|
||||
"""
|
||||
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
|
||||
offset = 0
|
||||
timestamp = 0.0
|
||||
duration = (float(n) / sample_rate) / 2.0
|
||||
while offset + n < len(audio):
|
||||
yield Frame(audio[offset:offset + n], timestamp, duration)
|
||||
timestamp += duration
|
||||
offset += n
|
||||
|
||||
|
||||
def vad_collector(sample_rate, frame_duration_ms,
|
||||
padding_duration_ms, vad, frames):
|
||||
"""Filters out non-voiced audio frames.
|
||||
|
||||
Given a webrtcvad.Vad and a source of audio frames, yields only
|
||||
the voiced audio.
|
||||
|
||||
Uses a padded, sliding window algorithm over the audio frames.
|
||||
When more than 90% of the frames in the window are voiced (as
|
||||
reported by the VAD), the collector triggers and begins yielding
|
||||
audio frames. Then the collector waits until 90% of the frames in
|
||||
the window are unvoiced to detrigger.
|
||||
|
||||
The window is padded at the front and back to provide a small
|
||||
amount of silence or the beginnings/endings of speech around the
|
||||
voiced frames.
|
||||
|
||||
Arguments:
|
||||
|
||||
sample_rate - The audio sample rate, in Hz.
|
||||
frame_duration_ms - The frame duration in milliseconds.
|
||||
padding_duration_ms - The amount to pad the window, in milliseconds.
|
||||
vad - An instance of webrtcvad.Vad.
|
||||
frames - a source of audio frames (sequence or generator).
|
||||
|
||||
Returns: A generator that yields PCM audio data.
|
||||
"""
|
||||
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
|
||||
# We use a deque for our sliding window/ring buffer.
|
||||
ring_buffer = collections.deque(maxlen=num_padding_frames)
|
||||
# We have two states: TRIGGERED and NOTTRIGGERED. We start in the
|
||||
# NOTTRIGGERED state.
|
||||
triggered = False
|
||||
|
||||
voiced_frames = []
|
||||
for frame in frames:
|
||||
is_speech = vad.is_speech(frame.bytes, sample_rate)
|
||||
|
||||
# sys.stdout.write('1' if is_speech else '0')
|
||||
if not triggered:
|
||||
ring_buffer.append((frame, is_speech))
|
||||
num_voiced = len([f for f, speech in ring_buffer if speech])
|
||||
# If we're NOTTRIGGERED and more than 90% of the frames in
|
||||
# the ring buffer are voiced frames, then enter the
|
||||
# TRIGGERED state.
|
||||
if num_voiced > 0.9 * ring_buffer.maxlen:
|
||||
triggered = True
|
||||
# sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,))
|
||||
# We want to yield all the audio we see from now until
|
||||
# we are NOTTRIGGERED, but we have to start with the
|
||||
# audio that's already in the ring buffer.
|
||||
for f, s in ring_buffer:
|
||||
voiced_frames.append(f)
|
||||
ring_buffer.clear()
|
||||
else:
|
||||
# We're in the TRIGGERED state, so collect the audio data
|
||||
# and add it to the ring buffer.
|
||||
voiced_frames.append(frame)
|
||||
ring_buffer.append((frame, is_speech))
|
||||
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
|
||||
# If more than 90% of the frames in the ring buffer are
|
||||
# unvoiced, then enter NOTTRIGGERED and yield whatever
|
||||
# audio we've collected.
|
||||
if num_unvoiced > 0.9 * ring_buffer.maxlen:
|
||||
#sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
|
||||
triggered = False
|
||||
yield b''.join([f.bytes for f in voiced_frames])
|
||||
ring_buffer.clear()
|
||||
voiced_frames = []
|
||||
# If we have any leftover voiced audio when we run out of input,
|
||||
# yield it.
|
||||
if voiced_frames:
|
||||
yield b''.join([f.bytes for f in voiced_frames])
|
||||
|
||||
def remove_silence(filepath):
|
||||
filename = os.path.basename(filepath)
|
||||
output_path = filepath.replace(os.path.join(args.input_dir, ''),os.path.join(args.output_dir, ''))
|
||||
# ignore if the file exists
|
||||
if os.path.exists(output_path) and not args.force:
|
||||
return False
|
||||
# create all directory structure
|
||||
pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
|
||||
padding_duration_ms = 300 # default 300
|
||||
audio, sample_rate = read_wave(filepath)
|
||||
vad = webrtcvad.Vad(int(args.aggressiveness))
|
||||
frames = frame_generator(30, audio, sample_rate)
|
||||
frames = list(frames)
|
||||
segments = vad_collector(sample_rate, 30, padding_duration_ms, vad, frames)
|
||||
flag = False
|
||||
segments = list(segments)
|
||||
num_segments = len(segments)
|
||||
|
||||
if num_segments != 0:
|
||||
for i, segment in reversed(list(enumerate(segments))):
|
||||
if i >= 1:
|
||||
if flag == False:
|
||||
concat_segment = segment
|
||||
flag = True
|
||||
else:
|
||||
concat_segment = segment + concat_segment
|
||||
else:
|
||||
if flag:
|
||||
segment = segment + concat_segment
|
||||
write_wave(output_path, segment, sample_rate)
|
||||
print(output_path)
|
||||
return True
|
||||
else:
|
||||
print("> Just Copying the file to:", output_path)
|
||||
# if fail to remove silence just write the file
|
||||
write_wave(output_path, audio, sample_rate)
|
||||
|
||||
def preprocess_audios():
|
||||
files = sorted(glob.glob(os.path.join(args.input_dir, args.glob), recursive=True))
|
||||
print("> Number of files: ", len(files))
|
||||
if not args.force:
|
||||
print("> Ignoring files that already exist in the output directory.")
|
||||
|
||||
if files:
|
||||
# create threads
|
||||
num_threads = multiprocessing.cpu_count()
|
||||
process_map(remove_silence, files, max_workers=num_threads, chunksize=15)
|
||||
else:
|
||||
print("> No files Found !")
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
usage
|
||||
python remove_silence.py -i=VCTK-Corpus-bk/ -o=../VCTK-Corpus-removed-silence -g=wav48/*/*.wav -a=2
|
||||
"""
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-i', '--input_dir', type=str, default='../VCTK-Corpus',
|
||||
help='Dataset root dir')
|
||||
parser.add_argument('-o', '--output_dir', type=str, default='../VCTK-Corpus-removed-silence',
|
||||
help='Output Dataset dir')
|
||||
parser.add_argument('-f', '--force', type=bool, default=True,
|
||||
help='Force the replace of exists files')
|
||||
parser.add_argument('-g', '--glob', type=str, default='**/*.wav',
|
||||
help='path in glob format for acess wavs from input_dir. ex: wav48/*/*.wav')
|
||||
parser.add_argument('-a', '--aggressiveness', type=int, default=2,
|
||||
help='set its aggressiveness mode, which is an integer between 0 and 3. 0 is the least aggressive about filtering out non-speech, 3 is the most aggressive.')
|
||||
args = parser.parse_args()
|
||||
preprocess_audios()
|
|
@ -26,3 +26,4 @@ unidic-lite==1.0.8
|
|||
gruut[cs,de,es,fr,it,nl,pt,ru,sv]~=2.0.0
|
||||
fsspec>=2021.04.0
|
||||
pyworld
|
||||
webrtcvad
|
Loading…
Reference in New Issue