Add remove silence VAD script

pull/1032/head
Edresson 2021-10-26 11:35:18 -03:00 committed by Eren Gölge
parent 1bd1a0546b
commit 10ff90d6d2
2 changed files with 214 additions and 0 deletions

View File

@ -0,0 +1,213 @@
# This code is adpated from: https://github.com/wiseman/py-webrtcvad/blob/master/example.py
import os
import tqdm
import glob
import argparse
import pathlib
import collections
import contextlib
import sys
import wave
import numpy as np
import webrtcvad
from tqdm.contrib.concurrent import process_map
import multiprocessing
from itertools import chain
def read_wave(path):
"""Reads a .wav file.
Takes the path, and returns (PCM audio data, sample rate).
"""
with contextlib.closing(wave.open(path, 'rb')) as wf:
num_channels = wf.getnchannels()
assert num_channels == 1
sample_width = wf.getsampwidth()
assert sample_width == 2
sample_rate = wf.getframerate()
assert sample_rate in (8000, 16000, 32000, 48000)
pcm_data = wf.readframes(wf.getnframes())
return pcm_data, sample_rate
def write_wave(path, audio, sample_rate):
"""Writes a .wav file.
Takes path, PCM audio data, and sample rate.
"""
with contextlib.closing(wave.open(path, 'wb')) as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio)
class Frame(object):
"""Represents a "frame" of audio data."""
def __init__(self, bytes, timestamp, duration):
self.bytes = bytes
self.timestamp = timestamp
self.duration = duration
def frame_generator(frame_duration_ms, audio, sample_rate):
"""Generates audio frames from PCM audio data.
Takes the desired frame duration in milliseconds, the PCM data, and
the sample rate.
Yields Frames of the requested duration.
"""
n = int(sample_rate * (frame_duration_ms / 1000.0) * 2)
offset = 0
timestamp = 0.0
duration = (float(n) / sample_rate) / 2.0
while offset + n < len(audio):
yield Frame(audio[offset:offset + n], timestamp, duration)
timestamp += duration
offset += n
def vad_collector(sample_rate, frame_duration_ms,
padding_duration_ms, vad, frames):
"""Filters out non-voiced audio frames.
Given a webrtcvad.Vad and a source of audio frames, yields only
the voiced audio.
Uses a padded, sliding window algorithm over the audio frames.
When more than 90% of the frames in the window are voiced (as
reported by the VAD), the collector triggers and begins yielding
audio frames. Then the collector waits until 90% of the frames in
the window are unvoiced to detrigger.
The window is padded at the front and back to provide a small
amount of silence or the beginnings/endings of speech around the
voiced frames.
Arguments:
sample_rate - The audio sample rate, in Hz.
frame_duration_ms - The frame duration in milliseconds.
padding_duration_ms - The amount to pad the window, in milliseconds.
vad - An instance of webrtcvad.Vad.
frames - a source of audio frames (sequence or generator).
Returns: A generator that yields PCM audio data.
"""
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
# We use a deque for our sliding window/ring buffer.
ring_buffer = collections.deque(maxlen=num_padding_frames)
# We have two states: TRIGGERED and NOTTRIGGERED. We start in the
# NOTTRIGGERED state.
triggered = False
voiced_frames = []
for frame in frames:
is_speech = vad.is_speech(frame.bytes, sample_rate)
# sys.stdout.write('1' if is_speech else '0')
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
# If we're NOTTRIGGERED and more than 90% of the frames in
# the ring buffer are voiced frames, then enter the
# TRIGGERED state.
if num_voiced > 0.9 * ring_buffer.maxlen:
triggered = True
# sys.stdout.write('+(%s)' % (ring_buffer[0][0].timestamp,))
# We want to yield all the audio we see from now until
# we are NOTTRIGGERED, but we have to start with the
# audio that's already in the ring buffer.
for f, s in ring_buffer:
voiced_frames.append(f)
ring_buffer.clear()
else:
# We're in the TRIGGERED state, so collect the audio data
# and add it to the ring buffer.
voiced_frames.append(frame)
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
# If more than 90% of the frames in the ring buffer are
# unvoiced, then enter NOTTRIGGERED and yield whatever
# audio we've collected.
if num_unvoiced > 0.9 * ring_buffer.maxlen:
#sys.stdout.write('-(%s)' % (frame.timestamp + frame.duration))
triggered = False
yield b''.join([f.bytes for f in voiced_frames])
ring_buffer.clear()
voiced_frames = []
# If we have any leftover voiced audio when we run out of input,
# yield it.
if voiced_frames:
yield b''.join([f.bytes for f in voiced_frames])
def remove_silence(filepath):
filename = os.path.basename(filepath)
output_path = filepath.replace(os.path.join(args.input_dir, ''),os.path.join(args.output_dir, ''))
# ignore if the file exists
if os.path.exists(output_path) and not args.force:
return False
# create all directory structure
pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
padding_duration_ms = 300 # default 300
audio, sample_rate = read_wave(filepath)
vad = webrtcvad.Vad(int(args.aggressiveness))
frames = frame_generator(30, audio, sample_rate)
frames = list(frames)
segments = vad_collector(sample_rate, 30, padding_duration_ms, vad, frames)
flag = False
segments = list(segments)
num_segments = len(segments)
if num_segments != 0:
for i, segment in reversed(list(enumerate(segments))):
if i >= 1:
if flag == False:
concat_segment = segment
flag = True
else:
concat_segment = segment + concat_segment
else:
if flag:
segment = segment + concat_segment
write_wave(output_path, segment, sample_rate)
print(output_path)
return True
else:
print("> Just Copying the file to:", output_path)
# if fail to remove silence just write the file
write_wave(output_path, audio, sample_rate)
def preprocess_audios():
files = sorted(glob.glob(os.path.join(args.input_dir, args.glob), recursive=True))
print("> Number of files: ", len(files))
if not args.force:
print("> Ignoring files that already exist in the output directory.")
if files:
# create threads
num_threads = multiprocessing.cpu_count()
process_map(remove_silence, files, max_workers=num_threads, chunksize=15)
else:
print("> No files Found !")
if __name__ == "__main__":
"""
usage
python remove_silence.py -i=VCTK-Corpus-bk/ -o=../VCTK-Corpus-removed-silence -g=wav48/*/*.wav -a=2
"""
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input_dir', type=str, default='../VCTK-Corpus',
help='Dataset root dir')
parser.add_argument('-o', '--output_dir', type=str, default='../VCTK-Corpus-removed-silence',
help='Output Dataset dir')
parser.add_argument('-f', '--force', type=bool, default=True,
help='Force the replace of exists files')
parser.add_argument('-g', '--glob', type=str, default='**/*.wav',
help='path in glob format for acess wavs from input_dir. ex: wav48/*/*.wav')
parser.add_argument('-a', '--aggressiveness', type=int, default=2,
help='set its aggressiveness mode, which is an integer between 0 and 3. 0 is the least aggressive about filtering out non-speech, 3 is the most aggressive.')
args = parser.parse_args()
preprocess_audios()

View File

@ -26,3 +26,4 @@ unidic-lite==1.0.8
gruut[cs,de,es,fr,it,nl,pt,ru,sv]~=2.0.0
fsspec>=2021.04.0
pyworld
webrtcvad