mirror of https://github.com/coqui-ai/TTS.git
change import statements
parent
d96690f83f
commit
0b6a9995fc
|
@ -1,7 +1,7 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from utils.generic_utils import sequence_mask
|
||||
from TTS.utils.generic_utils import sequence_mask
|
||||
|
||||
|
||||
class BahdanauAttention(nn.Module):
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# coding: utf-8
|
||||
import torch
|
||||
from torch import nn
|
||||
from utils.text.symbols import symbols
|
||||
from TTS.utils.text.symbols import symbols
|
||||
from layers.tacotron import Prenet, Encoder, Decoder, PostCBHG
|
||||
|
||||
|
||||
|
|
2
setup.py
2
setup.py
|
@ -72,7 +72,7 @@ setup(
|
|||
},
|
||||
setup_requires=["numpy==1.14.3"],
|
||||
install_requires=[
|
||||
"scipy==0.19.0",
|
||||
"scipy >=0.19.0",
|
||||
"torch >= 0.4.1",
|
||||
"librosa==0.5.1",
|
||||
"unidecode==0.4.20",
|
||||
|
|
|
@ -11,7 +11,7 @@ import subprocess
|
|||
import numpy as np
|
||||
from collections import OrderedDict
|
||||
from torch.autograd import Variable
|
||||
from utils.text import text_to_sequence
|
||||
from TTS.utils.text import text_to_sequence
|
||||
|
||||
|
||||
class AttrDict(dict):
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
|
||||
import re
|
||||
from utils.text import cleaners
|
||||
from utils.text.symbols import symbols
|
||||
from TTS.utils.text import cleaners
|
||||
from TTS.utils.text.symbols import symbols
|
||||
|
||||
# Mappings from symbol to numeric ID and vice versa:
|
||||
_symbol_to_id = {s: i for i, s in enumerate(symbols)}
|
||||
|
|
|
@ -5,7 +5,7 @@ Defines the set of symbols used in text input to the model.
|
|||
The default is a set of ASCII characters that works well for English or text that has been run
|
||||
through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details.
|
||||
'''
|
||||
from utils.text import cmudict
|
||||
from TTS.utils.text import cmudict
|
||||
|
||||
_pad = '_'
|
||||
_eos = '~'
|
||||
|
|
Loading…
Reference in New Issue