mirror of https://github.com/coqui-ai/TTS.git
add support for CorentinJ Speaker encoder and add notebook for extract embeddings
parent
ac032f00f3
commit
07c961382f
|
@ -1,14 +1,14 @@
|
|||
|
||||
{
|
||||
"run_name": "libritts_100+360-angleproto",
|
||||
"run_description": "train speaker encoder for libritts 100 and 360",
|
||||
"run_name": "Model compatible to CorentinJ/Real-Time-Voice-Cloning",
|
||||
"run_description": "train speaker encoder with voxceleb1, voxceleb2 and libriSpeech ",
|
||||
"audio":{
|
||||
// Audio processing parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"num_freq": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||
"win_length": 1024, // stft window length in ms.
|
||||
"hop_length": 256, // stft window hop-lengh in ms.
|
||||
"num_mels": 40, // size of the mel spec frame.
|
||||
"fft_size": 400, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||
"win_length": 400, // stft window length in ms.
|
||||
"hop_length": 160, // stft window hop-lengh in ms.
|
||||
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
|
||||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
|
@ -27,7 +27,7 @@
|
|||
"trim_db": 60 // threshold for timming silence. Set this according to your dataset.
|
||||
},
|
||||
"reinit_layers": [],
|
||||
"loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
|
||||
"loss": "ge2e", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
|
||||
"grad_clip": 3.0, // upper limit for gradients for clipping.
|
||||
"epochs": 1000, // total number of epochs to train.
|
||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
|
@ -41,12 +41,13 @@
|
|||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
||||
"print_step": 1, // Number of steps to log traning on console.
|
||||
"output_path": "../../checkpoints/libri_tts/speaker_encoder/", // DATASET-RELATED: output path for all training outputs.
|
||||
"output_path": "../../checkpoints/voxceleb_librispeech/speaker_encoder/", // DATASET-RELATED: output path for all training outputs.
|
||||
"model": {
|
||||
"input_dim": 80, // input_dim == num_mels
|
||||
"proj_dim": 128,
|
||||
"lstm_dim": 384,
|
||||
"num_lstm_layers": 3
|
||||
"input_dim": 40,
|
||||
"proj_dim": 256,
|
||||
"lstm_dim": 256,
|
||||
"num_lstm_layers": 3,
|
||||
"use_lstm_with_projection": false
|
||||
},
|
||||
"datasets":
|
||||
[
|
||||
|
|
|
@ -16,15 +16,33 @@ class LSTMWithProjection(nn.Module):
|
|||
o, (_, _) = self.lstm(x)
|
||||
return self.linear(o)
|
||||
|
||||
class LSTMWithoutProjection(nn.Module):
|
||||
def __init__(self, input_dim, lstm_dim, proj_dim, num_lstm_layers):
|
||||
super().__init__()
|
||||
self.lstm = nn.LSTM(input_size=input_dim,
|
||||
hidden_size=lstm_dim,
|
||||
num_layers=num_lstm_layers,
|
||||
batch_first=True)
|
||||
self.linear = nn.Linear(lstm_dim, proj_dim, bias=True)
|
||||
self.relu = nn.ReLU()
|
||||
def forward(self, x):
|
||||
_, (hidden, _) = self.lstm(x)
|
||||
return self.relu(self.linear(hidden[-1]))
|
||||
|
||||
class SpeakerEncoder(nn.Module):
|
||||
def __init__(self, input_dim, proj_dim=256, lstm_dim=768, num_lstm_layers=3):
|
||||
def __init__(self, input_dim, proj_dim=256, lstm_dim=768, num_lstm_layers=3, use_lstm_with_projection=True):
|
||||
super().__init__()
|
||||
self.use_lstm_with_projection = use_lstm_with_projection
|
||||
layers = []
|
||||
# choise LSTM layer
|
||||
if use_lstm_with_projection:
|
||||
layers.append(LSTMWithProjection(input_dim, lstm_dim, proj_dim))
|
||||
for _ in range(num_lstm_layers - 1):
|
||||
layers.append(LSTMWithProjection(proj_dim, lstm_dim, proj_dim))
|
||||
self.layers = nn.Sequential(*layers)
|
||||
else:
|
||||
self.layers = LSTMWithoutProjection(input_dim, lstm_dim, proj_dim, num_lstm_layers)
|
||||
|
||||
self._init_layers()
|
||||
|
||||
def _init_layers(self):
|
||||
|
@ -37,12 +55,18 @@ class SpeakerEncoder(nn.Module):
|
|||
def forward(self, x):
|
||||
# TODO: implement state passing for lstms
|
||||
d = self.layers(x)
|
||||
if self.use_lstm_with_projection:
|
||||
d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1)
|
||||
else:
|
||||
d = torch.nn.functional.normalize(d, p=2, dim=1)
|
||||
return d
|
||||
|
||||
def inference(self, x):
|
||||
d = self.layers.forward(x)
|
||||
if self.use_lstm_with_projection:
|
||||
d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1)
|
||||
else:
|
||||
d = torch.nn.functional.normalize(d, p=2, dim=1)
|
||||
return d
|
||||
|
||||
def compute_embedding(self, x, num_frames=160, overlap=0.5):
|
||||
|
|
|
@ -79,7 +79,7 @@
|
|||
"#Preprocess dataset\n",
|
||||
"meta_data = []\n",
|
||||
"for i in range(len(DATASETS_NAME)):\n",
|
||||
" preprocessor = importlib.import_module('TTS.datasets.preprocess')\n",
|
||||
" preprocessor = importlib.import_module('TTS.tts.datasets.preprocess')\n",
|
||||
" preprocessor = getattr(preprocessor, DATASETS_NAME[i].lower())\n",
|
||||
" meta_data += preprocessor(DATASETS_PATH[i],DATASETS_METAFILE[i])\n",
|
||||
" \n",
|
||||
|
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue