add support for CorentinJ Speaker encoder and add notebook for extract embeddings

pull/10/head
Edresson 2020-08-05 08:43:27 -03:00 committed by erogol
parent ac032f00f3
commit 07c961382f
4 changed files with 25541 additions and 21 deletions

View File

@ -1,14 +1,14 @@
{ {
"run_name": "libritts_100+360-angleproto", "run_name": "Model compatible to CorentinJ/Real-Time-Voice-Cloning",
"run_description": "train speaker encoder for libritts 100 and 360", "run_description": "train speaker encoder with voxceleb1, voxceleb2 and libriSpeech ",
"audio":{ "audio":{
// Audio processing parameters // Audio processing parameters
"num_mels": 80, // size of the mel spec frame. "num_mels": 40, // size of the mel spec frame.
"num_freq": 1024, // number of stft frequency levels. Size of the linear spectogram frame. "fft_size": 400, // number of stft frequency levels. Size of the linear spectogram frame.
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled. "sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
"win_length": 1024, // stft window length in ms. "win_length": 400, // stft window length in ms.
"hop_length": 256, // stft window hop-lengh in ms. "hop_length": 160, // stft window hop-lengh in ms.
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used. "frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used. "frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis. "preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
@ -27,7 +27,7 @@
"trim_db": 60 // threshold for timming silence. Set this according to your dataset. "trim_db": 60 // threshold for timming silence. Set this according to your dataset.
}, },
"reinit_layers": [], "reinit_layers": [],
"loss": "angleproto", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA) "loss": "ge2e", // "ge2e" to use Generalized End-to-End loss and "angleproto" to use Angular Prototypical loss (new SOTA)
"grad_clip": 3.0, // upper limit for gradients for clipping. "grad_clip": 3.0, // upper limit for gradients for clipping.
"epochs": 1000, // total number of epochs to train. "epochs": 1000, // total number of epochs to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
@ -41,12 +41,13 @@
"checkpoint": true, // If true, it saves checkpoints per "save_step" "checkpoint": true, // If true, it saves checkpoints per "save_step"
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints. "save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
"print_step": 1, // Number of steps to log traning on console. "print_step": 1, // Number of steps to log traning on console.
"output_path": "../../checkpoints/libri_tts/speaker_encoder/", // DATASET-RELATED: output path for all training outputs. "output_path": "../../checkpoints/voxceleb_librispeech/speaker_encoder/", // DATASET-RELATED: output path for all training outputs.
"model": { "model": {
"input_dim": 80, // input_dim == num_mels "input_dim": 40,
"proj_dim": 128, "proj_dim": 256,
"lstm_dim": 384, "lstm_dim": 256,
"num_lstm_layers": 3 "num_lstm_layers": 3,
"use_lstm_with_projection": false
}, },
"datasets": "datasets":
[ [

View File

@ -16,15 +16,33 @@ class LSTMWithProjection(nn.Module):
o, (_, _) = self.lstm(x) o, (_, _) = self.lstm(x)
return self.linear(o) return self.linear(o)
class LSTMWithoutProjection(nn.Module):
def __init__(self, input_dim, lstm_dim, proj_dim, num_lstm_layers):
super().__init__()
self.lstm = nn.LSTM(input_size=input_dim,
hidden_size=lstm_dim,
num_layers=num_lstm_layers,
batch_first=True)
self.linear = nn.Linear(lstm_dim, proj_dim, bias=True)
self.relu = nn.ReLU()
def forward(self, x):
_, (hidden, _) = self.lstm(x)
return self.relu(self.linear(hidden[-1]))
class SpeakerEncoder(nn.Module): class SpeakerEncoder(nn.Module):
def __init__(self, input_dim, proj_dim=256, lstm_dim=768, num_lstm_layers=3): def __init__(self, input_dim, proj_dim=256, lstm_dim=768, num_lstm_layers=3, use_lstm_with_projection=True):
super().__init__() super().__init__()
self.use_lstm_with_projection = use_lstm_with_projection
layers = [] layers = []
layers.append(LSTMWithProjection(input_dim, lstm_dim, proj_dim)) # choise LSTM layer
for _ in range(num_lstm_layers - 1): if use_lstm_with_projection:
layers.append(LSTMWithProjection(proj_dim, lstm_dim, proj_dim)) layers.append(LSTMWithProjection(input_dim, lstm_dim, proj_dim))
self.layers = nn.Sequential(*layers) for _ in range(num_lstm_layers - 1):
layers.append(LSTMWithProjection(proj_dim, lstm_dim, proj_dim))
self.layers = nn.Sequential(*layers)
else:
self.layers = LSTMWithoutProjection(input_dim, lstm_dim, proj_dim, num_lstm_layers)
self._init_layers() self._init_layers()
def _init_layers(self): def _init_layers(self):
@ -37,12 +55,18 @@ class SpeakerEncoder(nn.Module):
def forward(self, x): def forward(self, x):
# TODO: implement state passing for lstms # TODO: implement state passing for lstms
d = self.layers(x) d = self.layers(x)
d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1) if self.use_lstm_with_projection:
d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1)
else:
d = torch.nn.functional.normalize(d, p=2, dim=1)
return d return d
def inference(self, x): def inference(self, x):
d = self.layers.forward(x) d = self.layers.forward(x)
d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1) if self.use_lstm_with_projection:
d = torch.nn.functional.normalize(d[:, -1], p=2, dim=1)
else:
d = torch.nn.functional.normalize(d, p=2, dim=1)
return d return d
def compute_embedding(self, x, num_frames=160, overlap=0.5): def compute_embedding(self, x, num_frames=160, overlap=0.5):

View File

@ -79,7 +79,7 @@
"#Preprocess dataset\n", "#Preprocess dataset\n",
"meta_data = []\n", "meta_data = []\n",
"for i in range(len(DATASETS_NAME)):\n", "for i in range(len(DATASETS_NAME)):\n",
" preprocessor = importlib.import_module('TTS.datasets.preprocess')\n", " preprocessor = importlib.import_module('TTS.tts.datasets.preprocess')\n",
" preprocessor = getattr(preprocessor, DATASETS_NAME[i].lower())\n", " preprocessor = getattr(preprocessor, DATASETS_NAME[i].lower())\n",
" meta_data += preprocessor(DATASETS_PATH[i],DATASETS_METAFILE[i])\n", " meta_data += preprocessor(DATASETS_PATH[i],DATASETS_METAFILE[i])\n",
" \n", " \n",

File diff suppressed because it is too large Load Diff