Add eval_split and eval_split_size in the call of load_tts_samples for all recipes

pull/1424/head
Edresson Casanova 2022-03-18 15:53:13 -03:00
parent 2e6e8f651d
commit 01e7cba5bf
17 changed files with 17 additions and 17 deletions

View File

@ -49,7 +49,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init model
model = AlignTTS(config, ap, tokenizer)

View File

@ -84,7 +84,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init the model
model = ForwardTTS(config, ap, tokenizer, speaker_manager=None)

View File

@ -83,7 +83,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init the model
model = ForwardTTS(config, ap, tokenizer)

View File

@ -60,7 +60,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# INITIALIZE THE MODEL
# Models take a config object and a speaker manager as input

View File

@ -67,7 +67,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init model
model = ForwardTTS(config, ap, tokenizer)

View File

@ -77,7 +77,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# INITIALIZE THE MODEL
# Models take a config object and a speaker manager as input

View File

@ -74,7 +74,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# INITIALIZE THE MODEL
# Models take a config object and a speaker manager as input

View File

@ -69,7 +69,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init model
model = Vits(config, ap, tokenizer, speaker_manager=None)

View File

@ -109,7 +109,7 @@ config.from_dict(config.to_dict())
ap = AudioProcessor(**config.audio.to_dict())
# load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader

View File

@ -71,7 +71,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader

View File

@ -69,7 +69,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader

View File

@ -69,7 +69,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader

View File

@ -69,7 +69,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader

View File

@ -72,7 +72,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init speaker manager for multi-speaker training
# it mainly handles speaker-id to speaker-name for the model and the data-loader

View File

@ -78,7 +78,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init speaker manager for multi-speaker training
# it mainly handles speaker-id to speaker-name for the model and the data-loader

View File

@ -78,7 +78,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init speaker manager for multi-speaker training
# it mainly handles speaker-id to speaker-name for the model and the data-loader

View File

@ -79,7 +79,7 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size)
# init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader