2018-01-22 14:59:41 +00:00
|
|
|
# coding: utf-8
|
|
|
|
from torch import nn
|
2019-08-29 09:49:53 +00:00
|
|
|
from TTS.layers.tacotron import Encoder, Decoder, PostCBHG
|
|
|
|
from TTS.utils.generic_utils import sequence_mask
|
2018-01-22 14:59:41 +00:00
|
|
|
|
2018-02-13 16:08:23 +00:00
|
|
|
|
2018-01-22 14:59:41 +00:00
|
|
|
class Tacotron(nn.Module):
|
2018-08-02 14:34:17 +00:00
|
|
|
def __init__(self,
|
2019-01-21 13:52:40 +00:00
|
|
|
num_chars,
|
2019-06-26 10:59:14 +00:00
|
|
|
num_speakers,
|
2019-05-27 12:40:28 +00:00
|
|
|
r=5,
|
2018-08-02 14:34:17 +00:00
|
|
|
linear_dim=1025,
|
|
|
|
mel_dim=80,
|
2019-02-16 02:18:49 +00:00
|
|
|
memory_size=5,
|
2019-03-25 23:52:47 +00:00
|
|
|
attn_win=False,
|
2019-05-17 14:15:43 +00:00
|
|
|
attn_norm="sigmoid",
|
2019-05-27 12:40:28 +00:00
|
|
|
prenet_type="original",
|
|
|
|
prenet_dropout=True,
|
|
|
|
forward_attn=False,
|
|
|
|
trans_agent=False,
|
2019-06-03 22:39:29 +00:00
|
|
|
forward_attn_mask=False,
|
2019-05-27 12:40:28 +00:00
|
|
|
location_attn=True,
|
2019-05-17 14:15:43 +00:00
|
|
|
separate_stopnet=True):
|
2018-01-22 14:59:41 +00:00
|
|
|
super(Tacotron, self).__init__()
|
2018-03-22 19:34:16 +00:00
|
|
|
self.r = r
|
2018-01-22 14:59:41 +00:00
|
|
|
self.mel_dim = mel_dim
|
|
|
|
self.linear_dim = linear_dim
|
2019-05-27 12:40:28 +00:00
|
|
|
self.embedding = nn.Embedding(num_chars, 256)
|
2019-01-15 14:51:55 +00:00
|
|
|
self.embedding.weight.data.normal_(0, 0.3)
|
2019-07-02 12:46:41 +00:00
|
|
|
if num_speakers > 1:
|
2019-07-01 12:00:44 +00:00
|
|
|
self.speaker_embedding = nn.Embedding(num_speakers, 256)
|
|
|
|
self.speaker_embedding.weight.data.normal_(0, 0.3)
|
2019-03-05 12:25:50 +00:00
|
|
|
self.encoder = Encoder(256)
|
2019-05-17 14:15:43 +00:00
|
|
|
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_win,
|
2019-05-27 12:40:28 +00:00
|
|
|
attn_norm, prenet_type, prenet_dropout,
|
2019-06-03 22:39:29 +00:00
|
|
|
forward_attn, trans_agent, forward_attn_mask,
|
|
|
|
location_attn, separate_stopnet)
|
2018-08-08 10:34:44 +00:00
|
|
|
self.postnet = PostCBHG(mel_dim)
|
2019-07-22 13:09:05 +00:00
|
|
|
self.last_linear = nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim)
|
2019-07-20 10:33:21 +00:00
|
|
|
|
2019-07-01 12:00:44 +00:00
|
|
|
def forward(self, characters, text_lengths, mel_specs, speaker_ids=None):
|
2018-01-22 14:59:41 +00:00
|
|
|
B = characters.size(0)
|
2019-03-06 12:14:58 +00:00
|
|
|
mask = sequence_mask(text_lengths).to(characters.device)
|
2018-01-22 14:59:41 +00:00
|
|
|
inputs = self.embedding(characters)
|
2018-02-04 16:25:00 +00:00
|
|
|
encoder_outputs = self.encoder(inputs)
|
2019-07-01 12:00:44 +00:00
|
|
|
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
|
|
|
speaker_ids)
|
2018-05-11 11:15:06 +00:00
|
|
|
mel_outputs, alignments, stop_tokens = self.decoder(
|
2018-08-10 15:43:45 +00:00
|
|
|
encoder_outputs, mel_specs, mask)
|
2018-01-22 14:59:41 +00:00
|
|
|
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
|
|
|
|
linear_outputs = self.postnet(mel_outputs)
|
|
|
|
linear_outputs = self.last_linear(linear_outputs)
|
2018-05-11 11:15:06 +00:00
|
|
|
return mel_outputs, linear_outputs, alignments, stop_tokens
|
2019-03-05 12:25:50 +00:00
|
|
|
|
2019-07-01 12:00:44 +00:00
|
|
|
def inference(self, characters, speaker_ids=None):
|
2019-03-05 12:25:50 +00:00
|
|
|
B = characters.size(0)
|
|
|
|
inputs = self.embedding(characters)
|
|
|
|
encoder_outputs = self.encoder(inputs)
|
2019-07-01 12:00:44 +00:00
|
|
|
encoder_outputs = self._add_speaker_embedding(encoder_outputs,
|
|
|
|
speaker_ids)
|
2019-03-05 12:25:50 +00:00
|
|
|
mel_outputs, alignments, stop_tokens = self.decoder.inference(
|
|
|
|
encoder_outputs)
|
|
|
|
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
|
|
|
|
linear_outputs = self.postnet(mel_outputs)
|
|
|
|
linear_outputs = self.last_linear(linear_outputs)
|
2019-07-01 12:00:44 +00:00
|
|
|
return mel_outputs, linear_outputs, alignments, stop_tokens
|
|
|
|
|
|
|
|
def _add_speaker_embedding(self, encoder_outputs, speaker_ids):
|
2019-07-19 09:12:48 +00:00
|
|
|
if hasattr(self, "speaker_embedding") and speaker_ids is None:
|
|
|
|
raise RuntimeError(" [!] Model has speaker embedding layer but speaker_id is not provided")
|
2019-07-01 12:00:44 +00:00
|
|
|
if hasattr(self, "speaker_embedding") and speaker_ids is not None:
|
|
|
|
speaker_embeddings = self.speaker_embedding(speaker_ids)
|
|
|
|
|
|
|
|
speaker_embeddings.unsqueeze_(1)
|
|
|
|
speaker_embeddings = speaker_embeddings.expand(encoder_outputs.size(0),
|
|
|
|
encoder_outputs.size(1),
|
|
|
|
-1)
|
2019-07-01 19:19:35 +00:00
|
|
|
encoder_outputs = encoder_outputs + speaker_embeddings
|
2019-07-01 12:00:44 +00:00
|
|
|
return encoder_outputs
|