TTS/notebooks/dataset_analysis/PhonemeCoverage.ipynb

287 lines
294 KiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Jupyter Notbook for phoneme coverage analysis\n",
"\n",
"This jupyter notebook checks dataset configured in config.json for phoneme coverage.\n",
"As mentioned here https://github.com/mozilla/TTS/wiki/Dataset#what-makes-a-good-dataset a good phoneme coverage is recommended.\n",
"\n",
"Most parameters will be taken from config.json file in mozilla tts repo so please ensure it's configured correctly for your dataset.\n",
"This notebook used lots of existring code from the TTS repo to ensure future compatibility.\n",
"\n",
"Many thanks to Neil Stoker supporting me on this topic :-).\n",
"\n",
"I provide this notebook without any warrenty but it's hopefully useful for your dataset analysis.\n",
"\n",
"Happy TTS'ing :-)\n",
"\n",
"Thorsten Müller\n",
"\n",
"* https://github.com/thorstenMueller/deep-learning-german-tts\n",
"* https://discourse.mozilla.org/t/contributing-my-german-voice-for-tts/"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"# set some vars\n",
"TTS_PATH = \"/home/thorsten/___dev/tts/mozilla/TTS\"\n",
"CONFIG_FILE = \"/home/thorsten/___dev/tts/mozilla/TTS/TTS/tts/configs/config.json\"\n",
"CHARS_TO_REMOVE = \".,:!?'\""
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/home/thorsten/___dev/tts/mozilla/TTS\n"
]
}
],
"source": [
"cd $TTS_PATH"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# import stuff\n",
"from TTS.utils.io import load_config\n",
"from TTS.tts.datasets.preprocess import load_meta_data\n",
"from TTS.tts.utils.text import phoneme_to_sequence, sequence_to_phoneme\n",
"from tqdm import tqdm\n",
"from matplotlib import pylab as plt\n",
"\n",
"# extra imports that might not be included in requirements.txt\n",
"import collections\n",
"import operator\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# Load config.json properties\n",
"CONFIG = load_config(CONFIG_FILE)\n",
"\n",
"# Load some properties from config.json\n",
"CONFIG_METADATA = load_meta_data(CONFIG.datasets)[0]\n",
"CONFIG_DATASET = CONFIG.datasets[0]\n",
"CONFIG_PHONEME_LANGUAGE = CONFIG.phoneme_language\n",
"CONFIG_TEXT_CLEANER = CONFIG.text_cleaner\n",
"CONFIG_ENABLE_EOS_BOS_CHARS = CONFIG.enable_eos_bos_chars\n",
"\n",
"# Will be printed on generated output graph\n",
"CONFIG_RUN_NAME = CONFIG.run_name\n",
"CONFIG_RUN_DESC = CONFIG.run_description"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Run name: thorsten-de (github.com/thorstenMueller/deep-learning-german-tts)\n",
" > Dataset files: 101\n",
" > Phoneme language: de\n",
" > Used text cleaner: phoneme_cleaners\n",
" > Enable eos bos chars: False\n"
]
}
],
"source": [
"# print some debug information on loaded config values\n",
"print(\" > Run name: \" + CONFIG_RUN_NAME + \" (\" + CONFIG_RUN_DESC + \")\")\n",
"print(\" > Dataset files: \" + str(len(CONFIG_METADATA)))\n",
"print(\" > Phoneme language: \" + CONFIG_PHONEME_LANGUAGE)\n",
"print(\" > Used text cleaner: \" + CONFIG_TEXT_CLEANER)\n",
"print(\" > Enable eos bos chars: \" + str(CONFIG_ENABLE_EOS_BOS_CHARS))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 77%|███████▋ | 78/101 [00:06<00:01, 13.03it/s][WARNING] 1 utterances containing language switches on lines 1\n",
"[WARNING] extra phones may appear in the \"de\" phoneset\n",
"[WARNING] language switch flags have been kept (applying \"keep-flags\" policy)\n",
"100%|██████████| 101/101 [00:07<00:00, 12.87it/s]\n"
]
}
],
"source": [
"# Get phonemes from metadata\n",
"phonemes = []\n",
"\n",
"for phrase in tqdm(CONFIG_METADATA):\n",
" if len(phrase[0]) > 0:\n",
" tmpPhrase = phrase[0].rstrip('\\n')\n",
" for removeChar in CHARS_TO_REMOVE:\n",
" tmpPhrase = tmpPhrase.replace(removeChar,\"\")\n",
" \n",
" seq = phoneme_to_sequence(tmpPhrase, [CONFIG_TEXT_CLEANER], CONFIG_PHONEME_LANGUAGE, CONFIG_ENABLE_EOS_BOS_CHARS)\n",
" text = sequence_to_phoneme(seq)\n",
" text = text.replace(\" \",\"\")\n",
" phonemes.append(text)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset contains 39 different ipa phonemes.\n",
"Dataset consists of 2481 phonemes\n"
]
}
],
"source": [
"s = \"\"\n",
"phonemeString = s.join(phonemes)\n",
"\n",
"d = {}\n",
"collections._count_elements(d, phonemeString)\n",
"sorted_d = dict(sorted(d.items(), key=operator.itemgetter(1),reverse=True))\n",
"\n",
"# remove useless keys\n",
"sorted_d.pop(' ', None)\n",
"sorted_d.pop('ˈ', None)\n",
"\n",
"phonemesSum = len(phonemeString.replace(\" \",\"\"))\n",
"\n",
"print(\"Dataset contains \" + str(len(sorted_d)) + \" different ipa phonemes.\")\n",
"print(\"Dataset consists of \" + str(phonemesSum) + \" phonemes\")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"5 rarest phonemes\n",
"y --> 1 occurrences\n",
"ø --> 2 occurrences\n",
"( --> 2 occurrences\n",
") --> 2 occurrences\n",
"j --> 3 occurrences\n"
]
}
],
"source": [
"print(\"5 rarest phonemes\")\n",
"\n",
"rareList = dict(sorted(sorted_d.items(), key=operator.itemgetter(1), reverse=False)[:5])\n",
"for key, value in rareList.items():\n",
" print(key + \" --> \" + str(value) + \" occurrences\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAC2AAAAtHCAYAAADZF5EIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOydd7gdVbXAfysJAULvPQTpVXoRhQCKgDRB0Yciodh7BxSN2FFBfaCgiBGUJ1UERFTKBZHepdfQSyihhhSy3h9rLpm7zz7nzMyZc2bOvev3ffMlM/fsMrPb2muvvbaoKo7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOE57RlWdAcdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxnH7BDbAdx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3Ey4gbYjuM4juM4juM4juM4juM4juM4juM4juM4juM4juM4juM4GXEDbMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxnIy4AbbjOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOI7jOE5G3ADbcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRzHcRwnI26A7TiO4xRGRCaJiAbXhKrz5TiO4zj9jogsJiKfEZEzReQ+EXleRN4Ixtxbqs7nSEFEBoJvP1B1nhxnJCIiEyPzj4lV56sKROSjwXf4cdV5akcd+tKRXoci7z656jw5Ti8QkalB3Z9SdZ4cx3EGKTo++7heL+og6zq9RUSmBGU+teo8Ob3D+2DHcZzhgYgsJyIvp/rz+0Vk/qrz5ThOf+EG2I7jOI7jOI7jODVCRD4BPAr8L/A+YA1gCXz+5jiO4wAisiTww9Sj54AfVJQdx3Ecx3Ecx3Ecx3Ecx3GcvkNVnwaOST1aHfhqRdlxHKdP8QV8x3GcYYCITIjstm51zRCRp0TkHhE5X0Qmi8hOIuLjguM4juNUiIgcCfwaWKTqvDiO4zi15QfAUqn776nqi1VlxnEcJw8i8pVAR3Vu1XlynOFKk9MLB6+5IrJaSekc2UoXXUYajlMEEbk9qI97V50nx3Ecx3Ecp3b8FHgmdX+4iIyvKjOO4/QfbmjnOI4zMlkAWA5YC9gd+DZwMfCAiHxZRMZUmTnHcRzHGYmIyGbA5MifFHgEuA24NXXd07PM9RlNDA0mVJ0vp3f4UcDOcEVE1gUOTT16Gjihouz0BBGZGrTnKVXnyXGcjtgruG8wwE4cBbgB5whGRAaCOjBQdZ6GIQIc1HEkIqXE4zhlIyKrA+unHs0A/llRdhzHcRzHcWpH2eso/aqTV9WXgWNTj8YBR1WUHcdx+hA3wHYcx3HSTMB2+F0jImtWnBfHcRzHGWl8icY52g+BpVV1VVV9q6punLo+UEEeHcdxnGr5LjA6dX+sqr5eVWYcx3HyICLLAG9LPXoDuKCi7DiOAweWcCLiDkApnrQdp2TCDT//UtXXKsmJ4ziO4ziOU3d+BaRPGPxw4gjDcRynLW6A7TiOM3x5laFeMtPXfcALLcJuBlwsIit3O5OO4ziO40Cy6L1H8PhMVT1CVZ+vIk+O4zhOvRCRTYF9Uo9ewhYHHMdx+oU9GLomcZWqPltVZhzHYTywU4dxHFxGRhynC+wd3P+1klw4juM4juM4tUdVX2LoKYOjge9UlB3HcfqMMVVnwHEcx+kaN6jqxFY/SI7h+yDwBWDp4M/jgTOBbbqSO8dxHMdx0qwLLBI8O72KjDiO4zi15euApO5PTY7I7AvazU8dxxkRhN5I3RjOcXrPC8ASqfuDgX8ViUhEFmPo5jCA54Eli2XNccpBRJZm6IkLc4HzK8qO4zjDEFWV9r9yHMdx+owTga8xT/+6r4isrqoPVJgnx3H6APeA7TiOM4JR1QdU9fvAhsB1kZ9sLSLv73G2HMdxHGckMj7y7J6e58JxHMepJSKyKrBv8PjEKvLiOI5TBBEZB7wreHxuFXlxnBHOacH93iKyRPSX7dkfWDB1fxdwc8G4HKdMdse8Fg5ylapOqyozjuM4juM4Tv1R1YeAi1OPRmGODB3HcVriBtiO4zgOqvoUppR8KvLnj/c4O47jOI4zElks8uzVnufCcRzHqSufYagRyfWq+t+qMuM4jlOAnRlqqHmHe5FynEq4Brgzdb8AZkhdhIOD+98XjMdxymbv4N5PXHAcx3Ecx3Gy8Lvg/iARWbSSnDiO0ze4AbbjOI4DQOIB4ujIn96eeClyHMdxHKd7LBB5pj3PheM4jlM7RGQMcEDw+Mwq8uI4jtMBewX3bgznONURGkoflDcCEdkA2Dz1aA5wSieZcpwyEJEFaTxxwcccx3Ecx3EcJwsXADNS9wsBfmK84zgtGVN1BhzHcZxacQ5wTPBsfmB94PqikYrIfMCWwHrA0sBsYBpwL3Cdqr5RNO4WaS6epLk8sAzmLe6Z5Lq+V0cOJosRmyT5GA08CzwKXKmqXfFsmrz7FsBy2LvPn6Q7+O5PdiPdIA/jsUWYVbGJycvA/dhxjy/kiGdd7PutAIzF3uEB7PvN6UK+BdgQWB37dkthHminAVOx71d6umUgImOxb74ylu8lgJnAS9g3uzPxdl9GWssmaS2bXG9gZfM0cI2qvlRGOnVCRJYDNsXqxbLYRsZpzHvn53uQh/FYe1gVWAT77k8Dp6vqaxnCLwusg9XvxZnXNp8HHsf641e6lPf5gG2SvK+QPH4WuAO4oRvjQJN8rA2sjZXh0lgbmYb1y9eq6uu9yEcVJJuptgJWxOrxAti7PwPcrKqP9SgfawJvxfqqhYFZwFOqOiwW6kVkGWBr4C3Y+72IfeNrVfXhLqW5FiZjLcu8cesZrF5fp6qzu5FukIdxmNy1JrAkpmt4EbhMVe9oE3Z0Em5DrG4uislMr2Fj2KPAQ8ADqjq3W+/QCXWQH0RkFDZObYjVBcX62Qcx+WtWN9MvSvLtNsPqwIrAfNi4dDdWf3vSLydj7EZY+S2DjbHPAk8AV3drfMzBuzHZPs1ZZUWeGKlsi/XNy2Pv/xTwX+BWVR1xG4L6tU2VQdIuN8baxLJYn/wk8Aj27jMrzF5TRtp8KNCzLJU8fhq4SVVvzRHPopj+YG1sjvAq1v7/U6Z8mIz3uwePa2cMJyKrYN9jVWAcNiY9jX2Pp7uQ3qAMsSY2/izJPPnxIaw8uy7/pPRIg3PFUdi7/72dDJvUxXWBDbD8L4r1mTOA6Vjf8aCqTu1W/jslqZ+bYuW+DNZ/vITJcvdh86WujoUV6E5PBX7IvDXCzURkI1W9LUcchwT3F6rq01athxd1kPd7RTKebgGshI1xiwIvYO96p6re2SJ4WXkoPL9MeBfWhw9yl6reVyAfS2Hz+5Wwcp+B9Wk3JsfTd50qy6MmawxvweaLq2CnaEzDdJhX90IXWxW91l+KyBKYznhNbAxcGNPJDMpB1/Xqe5fQ/mNx9lS+K4Nez0frorvvlDroNuogMySy7caYXLkctg7wKnCbql5SMM5lsbWF1bC1qdeAh7H6mHmeLSKrMW/eviBWzx4GLi+zb0vqwlpY37Y0Nn7OwcbQZ4FbejU/Gcn6pW7Qi/mnqr4qIhcB7009/giNnrEdx3Hmoap++eWXX371+QVMwITL9DVQMK5XInHt1uS3kyK/nZD6+/LAzzGBN/zd4PUCcCywVAnfYQzwUeDf2ESqWZpzMYPyLwHzl/S9J6X+Pj/wRWyxrFkeZmIG7+uWVAcWTN7nqjbvrsDtwNeBhQqkM9CqngH7Jd+2WdqvY95wVm6RxvzA57BFrlb15gfAuJK+3+ZJvp5q8+1eAs4Gtuxmm86R79GYN8SLMAVKq7wrZsz0c2CTgnXsq8ANSRtqlsZs4ArsGNrRGeNeLgmXjufcEr7PCZH8rZ8j/BLAt4Gb2rzzG0m9/zgwX4F8Tg3im5L623zAJ4HbWqQ/oUm8iwAfAv6AKbHa1Y85yXscCowtqY6Ox5QSz7dI9zngJ8AyqXCTsr5nhjysBfw68p3Da0bSlnbuUfu
"text/plain": [
"<Figure size 3600x3600 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"# create plot from analysis result\n",
"\n",
"x = []\n",
"y = []\n",
"\n",
"for key, value in sorted_d.items():\n",
" x.append(key)\n",
" y.append(value)\n",
"\n",
"plt.figure(figsize=(50,50))\n",
"plt.title(\"Phoneme coverage for \" + CONFIG_RUN_NAME + \" (\" + CONFIG_RUN_DESC + \")\", fontsize=50)\n",
"plt.xticks(fontsize=50)\n",
"plt.yticks(fontsize=50)\n",
"plt.barh(x,y, align='center', alpha=1.0)\n",
"plt.gca().invert_yaxis()\n",
"plt.ylabel('phoneme', fontsize=50)\n",
"plt.xlabel('occurrences', fontsize=50)\n",
"\n",
"for i, v in enumerate(y):\n",
" plt.text(v + 2, i - .2, str(v), fontsize=20)\n",
" plt.text(v + 2, i + .2, \"(\" + str(round(100/phonemesSum * v,2)) + \"%)\", fontsize=20)\n",
" \n",
" \n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}