TTS/notebooks/TacotronPlayGround.ipynb

743 lines
3.1 MiB
Plaintext
Raw Normal View History

2018-02-13 16:33:14 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
2018-02-13 16:33:14 +00:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
2018-02-13 16:33:14 +00:00
"source": [
"%load_ext autoreload\n",
"%autoreload 2\n",
"import os\n",
"import sys\n",
"import io\n",
"import torch \n",
"import time\n",
"import numpy as np\n",
"from collections import OrderedDict\n",
"\n",
"%pylab inline\n",
"rcParams[\"figure.figsize\"] = (16,5)\n",
"sys.path.append('/home/erogol/projects/')\n",
"\n",
"import librosa\n",
"import librosa.display\n",
"\n",
2018-02-23 14:20:22 +00:00
"from torchviz import make_dot, make_dot_from_trace\n",
"\n",
2018-02-13 16:33:14 +00:00
"from TTS.models.tacotron import Tacotron \n",
"from TTS.layers import *\n",
"from TTS.utils.data import *\n",
"from TTS.utils.audio import AudioProcessor\n",
"from TTS.utils.generic_utils import load_config\n",
"from TTS.utils.text import text_to_sequence\n",
"\n",
"import IPython\n",
"from IPython.display import Audio\n",
"from utils import *"
]
},
{
"cell_type": "code",
"execution_count": 2,
2018-04-10 16:37:15 +00:00
"metadata": {},
2018-02-13 16:33:14 +00:00
"outputs": [],
"source": [
"def tts(model, text, CONFIG, use_cuda, ap, figures=True):\n",
" t_1 = time.time()\n",
" waveform, alignment, spectrogram = create_speech(model, text, CONFIG, use_cuda, ap) \n",
" print(\" > Run-time: {}\".format(time.time() - t_1))\n",
" if figures: \n",
" visualize(alignment, spectrogram, CONFIG) \n",
" IPython.display.display(Audio(waveform, rate=CONFIG.sample_rate)) \n",
" return alignment, spectrogram"
]
},
{
"cell_type": "code",
"execution_count": 3,
2018-04-10 16:37:15 +00:00
"metadata": {},
2018-02-13 16:33:14 +00:00
"outputs": [],
"source": [
"# Set constants\n",
"ROOT_PATH = '/data/shared/erogol_models/April-12-2018_06:00AM-06d4b23/'\n",
"MODEL_PATH = ROOT_PATH + '/checkpoint_118440.pth.tar'\n",
2018-02-13 16:33:14 +00:00
"CONFIG_PATH = ROOT_PATH + '/config.json'\n",
"OUT_FOLDER = ROOT_PATH + '/test/'\n",
"CONFIG = load_config(CONFIG_PATH)\n",
"use_cuda = False"
]
},
{
"cell_type": "code",
"execution_count": 4,
2018-02-13 16:33:14 +00:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" | > Number of characted : 149\n"
]
},
{
"data": {
"text/plain": [
"Tacotron(\n",
" (embedding): Embedding(149, 256)\n",
" (encoder): Encoder(\n",
" (prenet): Prenet(\n",
" (layers): ModuleList(\n",
" (0): Linear(in_features=256, out_features=256)\n",
" (1): Linear(in_features=256, out_features=128)\n",
" )\n",
" (relu): ReLU()\n",
" (dropout): Dropout(p=0.5)\n",
" )\n",
" (cbhg): CBHG(\n",
" (relu): ReLU()\n",
" (conv1d_banks): ModuleList(\n",
" (0): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(1,), stride=(1,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (1): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(2,), stride=(1,), padding=(1,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (2): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (3): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(4,), stride=(1,), padding=(2,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (4): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(5,), stride=(1,), padding=(2,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (5): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(6,), stride=(1,), padding=(3,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (6): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(7,), stride=(1,), padding=(3,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (7): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(8,), stride=(1,), padding=(4,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (8): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(9,), stride=(1,), padding=(4,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (9): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(10,), stride=(1,), padding=(5,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (10): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(11,), stride=(1,), padding=(5,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (11): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(12,), stride=(1,), padding=(6,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (12): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(13,), stride=(1,), padding=(6,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (13): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(14,), stride=(1,), padding=(7,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (14): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(15,), stride=(1,), padding=(7,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (15): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(16,), stride=(1,), padding=(8,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" )\n",
" (max_pool1d): MaxPool1d(kernel_size=2, stride=1, padding=1, dilation=1, ceil_mode=False)\n",
" (conv1d_projections): ModuleList(\n",
" (0): BatchNormConv1d(\n",
" (conv1d): Conv1d (2048, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (1): BatchNormConv1d(\n",
" (conv1d): Conv1d (128, 128, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n",
" (bn): BatchNorm1d(128, eps=0.001, momentum=0.99, affine=True)\n",
" )\n",
" )\n",
" (pre_highway): Linear(in_features=128, out_features=128)\n",
" (highways): ModuleList(\n",
" (0): Highway(\n",
" (H): Linear(in_features=128, out_features=128)\n",
" (T): Linear(in_features=128, out_features=128)\n",
" (relu): ReLU()\n",
" (sigmoid): Sigmoid()\n",
" )\n",
" (1): Highway(\n",
" (H): Linear(in_features=128, out_features=128)\n",
" (T): Linear(in_features=128, out_features=128)\n",
" (relu): ReLU()\n",
" (sigmoid): Sigmoid()\n",
" )\n",
" (2): Highway(\n",
" (H): Linear(in_features=128, out_features=128)\n",
" (T): Linear(in_features=128, out_features=128)\n",
" (relu): ReLU()\n",
" (sigmoid): Sigmoid()\n",
" )\n",
" (3): Highway(\n",
" (H): Linear(in_features=128, out_features=128)\n",
" (T): Linear(in_features=128, out_features=128)\n",
" (relu): ReLU()\n",
" (sigmoid): Sigmoid()\n",
" )\n",
" )\n",
" (gru): GRU(128, 128, batch_first=True, bidirectional=True)\n",
" )\n",
" )\n",
" (decoder): Decoder(\n",
" (prenet): Prenet(\n",
" (layers): ModuleList(\n",
" (0): Linear(in_features=400, out_features=256)\n",
" (1): Linear(in_features=256, out_features=128)\n",
" )\n",
" (relu): ReLU()\n",
" (dropout): Dropout(p=0.5)\n",
" )\n",
" (attention_rnn): AttentionRNN(\n",
" (rnn_cell): GRUCell(384, 256)\n",
" (alignment_model): BahdanauAttention(\n",
" (query_layer): Linear(in_features=256, out_features=256)\n",
" (annot_layer): Linear(in_features=256, out_features=256)\n",
" (v): Linear(in_features=256, out_features=1)\n",
" )\n",
" )\n",
" (project_to_decoder_in): Linear(in_features=512, out_features=256)\n",
" (decoder_rnns): ModuleList(\n",
" (0): GRUCell(256, 256)\n",
" (1): GRUCell(256, 256)\n",
" )\n",
" (proj_to_mel): Linear(in_features=256, out_features=400)\n",
" )\n",
" (postnet): CBHG(\n",
" (relu): ReLU()\n",
" (conv1d_banks): ModuleList(\n",
" (0): BatchNormConv1d(\n",
" (conv1d): Conv1d (80, 80, kernel_size=(1,), stride=(1,), bias=False)\n",
" (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (1): BatchNormConv1d(\n",
" (conv1d): Conv1d (80, 80, kernel_size=(2,), stride=(1,), padding=(1,), bias=False)\n",
" (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (2): BatchNormConv1d(\n",
" (conv1d): Conv1d (80, 80, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n",
" (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (3): BatchNormConv1d(\n",
" (conv1d): Conv1d (80, 80, kernel_size=(4,), stride=(1,), padding=(2,), bias=False)\n",
" (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (4): BatchNormConv1d(\n",
" (conv1d): Conv1d (80, 80, kernel_size=(5,), stride=(1,), padding=(2,), bias=False)\n",
" (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (5): BatchNormConv1d(\n",
" (conv1d): Conv1d (80, 80, kernel_size=(6,), stride=(1,), padding=(3,), bias=False)\n",
" (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (6): BatchNormConv1d(\n",
" (conv1d): Conv1d (80, 80, kernel_size=(7,), stride=(1,), padding=(3,), bias=False)\n",
" (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (7): BatchNormConv1d(\n",
" (conv1d): Conv1d (80, 80, kernel_size=(8,), stride=(1,), padding=(4,), bias=False)\n",
" (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" )\n",
" (max_pool1d): MaxPool1d(kernel_size=2, stride=1, padding=1, dilation=1, ceil_mode=False)\n",
" (conv1d_projections): ModuleList(\n",
" (0): BatchNormConv1d(\n",
" (conv1d): Conv1d (640, 256, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n",
" (bn): BatchNorm1d(256, eps=0.001, momentum=0.99, affine=True)\n",
" (activation): ReLU()\n",
" )\n",
" (1): BatchNormConv1d(\n",
" (conv1d): Conv1d (256, 80, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n",
" (bn): BatchNorm1d(80, eps=0.001, momentum=0.99, affine=True)\n",
" )\n",
" )\n",
" (pre_highway): Linear(in_features=80, out_features=80)\n",
" (highways): ModuleList(\n",
" (0): Highway(\n",
" (H): Linear(in_features=80, out_features=80)\n",
" (T): Linear(in_features=80, out_features=80)\n",
" (relu): ReLU()\n",
" (sigmoid): Sigmoid()\n",
" )\n",
" (1): Highway(\n",
" (H): Linear(in_features=80, out_features=80)\n",
" (T): Linear(in_features=80, out_features=80)\n",
" (relu): ReLU()\n",
" (sigmoid): Sigmoid()\n",
" )\n",
" (2): Highway(\n",
" (H): Linear(in_features=80, out_features=80)\n",
" (T): Linear(in_features=80, out_features=80)\n",
" (relu): ReLU()\n",
" (sigmoid): Sigmoid()\n",
" )\n",
" (3): Highway(\n",
" (H): Linear(in_features=80, out_features=80)\n",
" (T): Linear(in_features=80, out_features=80)\n",
" (relu): ReLU()\n",
" (sigmoid): Sigmoid()\n",
" )\n",
" )\n",
" (gru): GRU(80, 80, batch_first=True, bidirectional=True)\n",
" )\n",
" (last_linear): Linear(in_features=160, out_features=1025)\n",
")"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
2018-02-13 16:33:14 +00:00
"source": [
"# load the model\n",
2018-04-10 16:37:15 +00:00
"model = Tacotron(CONFIG.embedding_size, CONFIG.num_freq, CONFIG.num_mels, CONFIG.r)\n",
2018-02-13 16:33:14 +00:00
"\n",
"# load the audio processor\n",
"ap = AudioProcessor(CONFIG.sample_rate, CONFIG.num_mels, CONFIG.min_level_db,\n",
" CONFIG.frame_shift_ms, CONFIG.frame_length_ms, CONFIG.preemphasis,\n",
" CONFIG.ref_level_db, CONFIG.num_freq, CONFIG.power, griffin_lim_iters=80) \n",
"\n",
"\n",
"# load model state\n",
"if use_cuda:\n",
" cp = torch.load(MODEL_PATH)\n",
"else:\n",
" cp = torch.load(MODEL_PATH, map_location=lambda storage, loc: storage)\n",
"\n",
"# load the model\n",
"model.load_state_dict(cp['model'])\n",
"if use_cuda:\n",
" model.cuda()\n",
"model.eval()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### EXAMPLES FROM TRAINING SET"
]
},
{
"cell_type": "code",
"execution_count": 5,
2018-04-10 16:37:15 +00:00
"metadata": {},
2018-02-13 16:33:14 +00:00
"outputs": [],
"source": [
"import pandas as pd\n",
2018-04-10 16:37:15 +00:00
"df = pd.read_csv('/data/shared/KeithIto/LJSpeech-1.0/metadata_val.csv', delimiter='|')"
2018-02-13 16:33:14 +00:00
]
},
{
"cell_type": "code",
"execution_count": 6,
2018-02-13 16:33:14 +00:00
"metadata": {
"collapsed": true
2018-02-13 16:33:14 +00:00
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Latona's findings were also confirmed by Ronald G. Wittmus, another FBI fingerprint expert.\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
"torch.Size([1, 400])\n",
" > Run-time: 8.135989665985107\n"
]
},
{
"data": {
"text/html": [
"\n",
" <audio controls=\"controls\" >\n",
" <source src=\"data:audio/wav;base64,UklGRizJAQBXQVZFZm10IBAAAAABAAEAIE4AAECcAAACABAAZGF0YQjJAQD+//v/+f/2//P/8P/u/+3/7P/r/+r/6v/r/+z/7f/u/+//8f/z//b/+P/6//z///8BAAMABAAGAAcACAAJAAgABwAGAAUAAgAAAP3/+//4//P/8P/t/+r/6P/m/+T/4//j/+T/5P/l/+f/6f/t//H/9f/5//7/AwAJAA4AEgAXABwAIQAkACUAKAApACkAKAAmACQAIQAeABsAFwATABAADQALAAcAAwACAAEAAAD+//v/+v/6//n/9v/y//D/7//u/+z/6f/o/+j/5//n/+b/5v/n/+j/6v/s/+3/8P/0//j//P8AAAUADAARABcAHAAjACkALQAwADMANQA2ADQAMgAuACgAIgAcABUACwABAPr/9P/t/+P/2v/U/8//y//E/77/uv+2/7T/sf+w/6//r/+x/7X/uf+9/8P/yv/S/9j/3//n/+//9P/5//7/AgAFAAcACQALAAoACgANABAAEgARABQAHQAlACkALwA4AEQATgBXAGEAbAB4AIMAjgCYAKEAqgC0ALoAvAC8ALoAtwCuAJ8AjgB8AGUASwAvABIA9v/Y/7v/n/+G/2//XP9N/0D/NP8u/yz/L/8z/zf/Pv9I/1f/Zf9x/3z/if+W/6P/rv+4/77/w//F/8b/yP/E/7v/sf+n/5//lv+K/3//d/9y/3P/dv98/4T/kf+k/7//2f/z/w4AMABWAHsAnQC7ANoA+QAVAS0BOwFBAUcBTgFPAUQBMgEjARcBBQHqAM0AtQCgAIcAbQBYAEkAPAAwAC4ANgA/AEIASwBgAHkAhgCKAI4AmwCiAJgAhQBwAFoAPAATAOT/sP9+/0f/Df/V/qT+ef5O/iT+Bf74/fT96/3h/eb9AP4j/j3+Tv5m/pX+zv78/hP/K/9Y/4//t//K/9z/+/8gADwATABcAG4AfwCJAJMAngCgAJMAhQCBAH4AbgBSADcAKAAeABEA///t/+n/8P/6/wYAGwA8AGoAogDkACoBcwHJAS8ClgLuAjUDgQPWAxQEKwQrBCsEIAT3A64DUgPuAnwC/gF0AdoAMwCO//b+Yf7E/Sf9nvw0/Nz7j/tV+zv7Rvtx+7X7Cfxv/PD8h/0d/qH+Gv+Y/xAAYwCMAJ8ArgCoAHYAHgC7/1z/+v6F/vP9W/3f/Iz8QPzV+1/7Hfst+1n7Zvtj+5L7E/y6/FH91f1p/in/DQD0ALwBZwIYA+UDrAREBa8FHQanBioHhgfGBxAIdgjhCCwJUAllCYwJvAnACXkJ/QiGCBYIbgdpBjEFAQTQAm8B1v8y/qH8Dvt0+e73kvZM9Rv0JvOG8iry7PHp8VzyRvNl9JX1A/fi+An7If0O/+oA1AKZBA0GEwehB8gHrQdYB4oGIwVnA9YBagC9/rv86fq2+eb4BPgc96f20vZL98P3Svgb+Tf6dvu2/PX9Q/+mAA4CYQOMBJoFnwaXB1cIuQjmCBYJUglqCUAJ9QjFCL8I2AgJCTgJWAlvCbgJPQqlCpgKIwqiCS0JlgicBzwGkwTKAiUBkf+t/TP7kPhs9qv0lfLd72Xt/etL633qiOly6bzq3+wc72nxa/Ra+Mv8EwHRBEgIyAskD74RHhOIE3QT2hJZEdoOzguGCO0EDQEn/Y35W/aD8/7w4u5u7c7s4uwp7XntQu7u70bygfRm9mn49frz/dgASAMxBeoG2gjuCoMM+AzFDP4MwQ07Ds8NLg1QDSMOEg+/D2cQUhGAEssTwRQlFfgUfhTDE2ESLRBNDRgKlAavAm/++fmG9RPxlOwT6NPjBeCb3IzZB9ef1YfVddZq2JjbXOB75nvtNfWO/WsGLQ9kF8seQiWTKjgu6i+pL8ctQCoKJVYeeBbHDacEyfuA87jrZuQ03gLamdc/1o/VEtZH2LLbsN/R40foSu3I8ov4N/6TA48IKA2LEZkVqBhrGgobMBvxGtAZzBcyFeES+RBhDw4OAg2yDDUNcQ7NDwMRNBJ3E3cUphTpE18SYxDqDcUK0gY2Aor9AvlJ9Mbuq+jO4pHdnNhv04LO2coRyRHJbspMzSnSUtmz4mzt1PinBM0QJR2pKK8yjDr9PxlD4ENZQrQ9/zX5K6wgtBTAByr6seyR4K/W3s6vyDTEbMKYw4HGQMpJzzHW39355PfrAfSw/GUE1go3EQkYLh56IiglzSaLJ/omqiTOICIcdBfmEgQOLgmeBd8DRgMcAywEhwbICUkNvBAHFOoVrBYiF3QX8RX8EXgN0Al0BgkBCPpB8zLtyObZ3mXWf86Sx8TBYb31ury6Hr24wnPLlNZM44LxPQGrEashRjA7PTZIeVB/VfpWBlWtTxhHcTvcLDUctwp8+Y3op9dNyKW8ebVMsbGuuK4es5O7X8WfzvLX0eIj7+f64QRxDdwVkx6RJsostDD0Mjw0UTRFMnMt1iadHzAYPBAyCBkBLvur9gb0K/S49gj6mP2GAsYJbhG6FhgZ6RqWHQEf0xy9FwsTmA9CC34EQPwx9CbsTOM82YjOx8MqukizGa9LrQGun7L2u//IrNj06ZD89Q9II/01dkbPU61d7WNxZopky15GVeZHrTaGIqIN4fiJ5CDQyLw2rSqjwJ5YnfidN6Kxq8K5qchc1k/jO/GJAPkO8RpxJDct4DULPVNB7kIzQ4FBrTzBNKUrWSK8F4ULj/9A9h/v4ug55DXjhOa66yvxoPetAOwLnhWJG58e3SHMJfsmiCPqHL4XehR7D7EGhfuM8RfoAt1dzx/BBbWRq1al9aEMormm6LBAwG/S/+Uc+wwS/yhlPW9O9FysaOZvSHFGbXRlulqBTFk5vyGBCOLwLNtuxbevnJ2ykuWObY+BkmiZXqX7tXzIU9oj6477ZAwkHIMpvzS5PqhHu00pUCVQ+E6lSydEmTgOK7gdiRDBAv30jujz3iTYitQH1fDYat/95kLwIPxWCbYVSB6IIxonjyrrLCEroCW1HmgZZhTIDMsByfRT6Ojbe87uvkavsKPFnaCc052QoiGuuMA01/btVwSdG04zikmlWx9oSnDCdF91fG8sY9ZTaEIlLlwU+feR3X/GDbL3nSKNMYN5guqI/ZDkml2pmr5D1nrqIPyKDWcgWzFPPoJI1lB0WNZcm1xoWBJSL0upQFUxQB+/DVD/n/EJ5PHWgcwMyOzIac3d0iDaW+XL8+sCpRBOHKglVSwLMIQyvjLnLxkq2SLRHB4W6wzX/xLxF+P81GTFfrPno3madpctmAeb5aPmtFTM/uR9/CgUuSyHRFNYLmeXcPl1eXZ5cfRmb1ewRUowKBfC+vzevcaasC+csIoggQGA4oTMjAKY0Kjpvd/ULupz/q4RKCRzNY5Duk+iWGZfD2NSYpFeOlfCTfdA8TATH4AM+ftx7dTf+9KNyKrDVsRGyHjOydZN4oHw5P/ADgsbzyTOK7YvuTEpMisw4yqJI9AdYhhhD3ICL/Ta5v3X3sZetTGmSZwxmA6ZOJ0Opi23YM9n6EP/JBYNL8tGDFluZYRthnJucnRstl+ITr48ACjMDvrwP9Wtv9SriZghiHyBM4R0ilSTip/FsdPHjN2C8swFVRnMKzc7pEijU/ld7WOXZKJh1ltjVUNKiDsZKsAXbwd/98jpFN3X0VHJq8TGxm/MhtOl2qPkFfQqBKcR+hl7IIInliw/LhQrHicAJBohERxcE5kJPv4t8tfjHtOXwb2wDaW+nuGc+50ApEqyNsfz3j31MwuoIsk5sE2SWzNlSWu+bAZpgF/NUe8/9iphE3n5iN8Qx+axo5//kKaIh4d8jH2VfqH9sL/DSdiJ7asB+xMGJcA050OHUctbNGJ8Y/9hg164VzJNzz5yL8Menw0m/nvxM+aH2WjP1spyzHXQUtSy2ofjofAL/wIL/BK4F3weqCQxJq8i8B5FH9IexBmUEOQHrgBh9rnmDNPrwXi14auRox+ecaA6qim5yMod36b1cgwTI6Y3f0k+V/RgNWfmZ/Jj9VpJTW07vCX5DhD
" Your browser does not support the audio element.\n",
" </audio>\n",
" "
],
"text/plain": [
"<IPython.lib.display.Audio object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAR4CAYAAABQAE75AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xuc5HdZJ/rPM50bCQQIUS5JNEESMRvFSwyJuIBcNAgrnj3IAsIisHJWwQt4FMSVYAAR3RXRxUsEJCoewBzFqHGDENjVPRASxAsEkBAEhkAgECEQcpnu5/zRNaEZpqtqmF/Xr6vzfr9e9Zqq+v36qWc6NZPppz6/77e6OwAAAACz7Bq7AQAAAGA5GCIAAAAAczFEAAAAAOZiiAAAAADMxRABAAAAmIshAgAAADAXQwQAAABgLoYIAAAAwFwMEQAAAIC5HDJ2A9vBYXV4H5Gjxm4DAABgqd2Yz+fmvqnG7mNo3/NdR/WnPr265a/zjn+86eLuPnvLX+ggGCIkOSJH5b714LHbAAAAWGqX9pvGbmFLfOrTq3n7xV+z5a+zcvf3H7vlL3KQDBEAAABgik6ylrWx29gWrIkAAAAAzEUSAQAAAKbqrLYkQiKJAAAAAMxJEgEAAACmWF8TocduY1uQRAAAAADmYogAAAAAzMXlDAAAADCDLR7XSSIAAAAAc5FEAAAAgCk6ndW2sGIiiQAAAADMSRIBAAAAZrDF4zpJBAAAAGAukggAAAAwRSdZlURIIokAAAAAzEkSAQAAAGawJsI6SQQAAABgLpIIAAAAMEUnWW1JhEQSAQAAAJiTJAIAAADMsDZ2A9uEJAIAAAAwF0kEAAAAmKLTWbU7QxJJBAAAAGBOkggAAAAwTSergghJJBEAAACAOUkiAAAAwBQduzPsJYkAAAAAzEUSAQAAAKaqrKbGbmJbkEQAAAAA5iKJAAAAAFN0kjW7MySRRAAAAADmJIkAAAAAM1gTYZ0kAgAAADAXSQQAAACYoiOJsJckAgAAADAXSQQAAACYYa0lERJJBAAAAGBOkggAAAAwhTURvkgSAQAAAJiLJAIAAABM0ams+gw+iSQCAAAAMCdJBAAAAJjB7gzrJBEAAACAuUgiAAAAwBR2Z/giSQQAAABgLpIIAAAAMFVltX0Gn0giAAAAAHOSRAAAAIApOsmaz+CTSCIAAAAAc5JEAAAAgBnszrBOEgEAAACYiyQCAAAATNFtd4a9fBcAAACAuUgiAAAAwAxr1kRIIokAAAAAzEkSAQAAAKboJKs+g08iiQAAAADMSRIBAAAAprI7w16+CwAAAMBcJBEAAABgik6y5jP4JEueRKiqZ1TVu6vqXVX1/1TVEVV1UlVdWlXvr6rXVtVhY/cJAAAAO8HSDhGq6rgkP57k9O4+LclKksckeXGSl3T3yUmuS/KU8boEAABgJ1jt2vLbMljaIcLEIUluV1WHJDkyyceSPCjJBZPj5yf5/pF6AwAAgB1laddE6O6PVtV/TfLhJF9I8oYk70jyr929Z3La7iTH7e/rq+qpSZ6aJEfkyK1vGAAAgKXUqawu/Wfww1ja70JV3TnJI5OclOQeSY5K8rD9nNr7+/ruPq+7T+/u0w/N4VvXKAAAAOwQS5tESPKQJB/s7k8mSVX9SZLvSHKnqjpkkkY4PsnVI/YIAADADrDWS/sZ/KCW+bvw4SRnVtWRVVVJHpzkiiRvTvKoyTlPTPJnI/UHAAAAO8rSJhG6+9KquiDJ3yXZk+SdSc5L8pdJXlNVL5g894rxugQAAGDZdWJNhImlHSIkSXefk+ScfZ6+KskZI7QDAAAAO9pSDxEAAABgq3Uqq11jt7EtyGMAAAAAczFEAAAAAObicgYAAACYYc1n8EkkEQAAAIA5SSIAAADAFN3JavsMPpFEAAAAAOYkiQAAAABTVdZii8dEEgEAAACWQlWdXVXvq6orq+rZ+zn+NVX15qp6Z1X9Y1V979A9SCIAAADAFJ3x10SoqpUkL0vy0CS7k1xWVRd29xUbTvsvSV7X3b9VVacmuSjJiUP2IYkAAAAA298ZSa7s7qu6++Ykr0nyyH3O6SRHT+7fMcnVQzchiQAAAAAzrC7mM/hjq+ryDY/P6+7zJvePS/KRDcd2J7nvPl//vCRvqKofS3JUkocM3aAhAgAAAGwP13b36Zsc29/Kjr3P48cmeVV3/7eqOivJH1TVad29NlSDhggAAAAwRaey1qPvzrA7yQkbHh+fL79c4SlJzk6S7n5rVR2R5NgknxiqCWsiAAAAwPZ3WZKTq+qkqjosyWOSXLjPOR9O8uAkqapvSHJEkk8O2YQkAgAAAMywoDURNtXde6rq6UkuTrKS5JXd/e6qOjfJ5d19YZKfSvK7VfWMrF/q8EPdve8lDwfFEAEAAACWQHdflPVtGzc+99wN969Icr+t7MEQAQAAAKboJGttNYDEmggAAADAnCQRAAAAYKrK6n53WLztkUQAAAAA5iKJAAAAAFNYE+GLfBcAAACAuUgiAAAAwAzWRFgniQAAAADMRRIBAAAApuguayJM+C4AAAAAc5FEAAAAgBlWJRGSSCIAAAAAc5JEAAAAgCk6yZrdGZJIIgAAAABzkkQAAACAqcqaCBO+CwAAAMBcJBEAAABgik6y1tZESCQRAAAAgDlJIgAAAMAMqz6DTyKJAAAAAMxJEgEAAACm6JQ1ESYkEQAAAIC5SCIAAADADGs+g08iiQAAAADMSRIBAAAApuhOVq2JkEQSAQAAAJiTJAIAAADMYHeGdZIIAAAAwFwkEQAAAGCKTmWtfQafSCIAAAAAc5JEAAAAgBlWY02ERBIBAAAAmJMkAgAAAEzRsTvDXpIIAAAAwFwkEQAAAGAquzPs5bsAAAAAzEUSAQAAAGZYsztDEkkEAAAAYE6SCAAAADBFd7Jqd4YkkggAAADAnCQRAAAAYAa7M6zzXQAAAADmIokAAAAAU3Qqa9ZESCKJAAAAAMxJEgEAAABmWIskQiKJAAAAAMxJEgEAAACm6MSaCBOSCAAAAMBcDBEAAACAubicAQAAAGZYa5/BJ5IIAAAAwJwkEQAAAGCaLgsrTkgiAAAAAHORRAAAAIApOslaJBESSQQAAABgTpIIAAAAMIM1EdZJIgAAAABzkUQAAACAKTqSCHtJIgAAAABzkUQAAACAGSQR1kkiAAAAAHORRAAAAIApOiWJMCGJAAAAAMxFEgEAAABmWIskQiKJAAAAAMxJEgEAAACmabsz7CWJAAAAAMxFEgEAAACm6Egi7CWJAAAAAMxFEgEAAABmkERYJ4kAAAAAzEUSAQAAAKbolCTChCQCAAAAMBdJBAAAAJihJRGSSCIAAAAAc5JEAAAAgBnWIomQSCIAAAAAc5JEAAAAgCm6Y3eGCUkEAAAAYC6SCAAAADCD3RnWSSIAAAAAc5FEAAAAgKnKmggTkggAAADAXCQRAAAAYAZrIqyTRAAAAADmIokAAAAAU3RiTYQJSQQAAABgLks9RKiqO1XVBVX13qp6T1WdVVXHVNVfV9X7J7/eeew+AQAAWGKd9AJuy2CphwhJXprkf3T3vZPcJ8l7kjw7yZu6++Qkb5o8BgAAAA7S0q6JUFVHJ7l/kh9Kku6+OcnNVfXIJA+cnHZ+krckedbiOwQAAGCnWIs1EZLlTiLcM8knk/xeVb2zql5eVUcluWt3fyxJJr9+9f6+uKqeWlWXV9Xlt+SmxXUNAAAAS2qZhwiHJPnWJL/V3d+S5PM5gEsXuvu87j69u08/NIdvVY8AAAAsuU7SXVt+WwbLPETYnWR3d186eXxB1ocK11TV3ZNk8usnRuoPAAAAdpSlHSJ098eTfKSqvn7y1IOTXJHkwiRPnDz3xCR/NkJ7AAAA7BiVtd762zJY2oUVJ34syaur6rAkVyV5UtYHI6+rqqck+XCSHxixPwAAANgxRhsiVNW9kpyR5LgkH03y9u6+8kBqdPffJzl9P4cefPAdAgAAwLrusTvYHhY+RKiqI5L8ZpInJFnZcGi1qs5P8rTutl0CAAAAbDNjJBH+a5IfTHJOktckuSb
"text/plain": [
"<matplotlib.figure.Figure at 0x7f8cef1a9e48>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
2018-02-13 16:33:14 +00:00
"source": [
2018-04-10 16:37:15 +00:00
"sentence = df.iloc[2, 1]\n",
2018-02-13 16:33:14 +00:00
"print(sentence)\n",
2018-04-10 16:37:15 +00:00
"model.decoder.max_decoder_steps = len(sentence)\n",
"align, spec = tts(model, sentence, CONFIG, use_cuda, ap)"
2018-02-13 16:33:14 +00:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparision with https://mycroft.ai/blog/available-voices/"
2018-02-13 16:33:14 +00:00
]
},
{
"cell_type": "code",
"execution_count": 7,
2018-02-13 16:33:14 +00:00
"metadata": {
"scrolled": true
2018-02-13 16:33:14 +00:00
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Run-time: 17.50665545463562\n"
]
},
{
"data": {
"text/html": [
"\n",
" <audio controls=\"controls\" >\n",
" <source src=\"data:audio/wav;base64,UklGRpT/AwBXQVZFZm10IBAAAAABAAEAIE4AAECcAAACABAAZGF0YXD/AwAEAAYABgAGAAgADgASABQAEwAQAA8AEQAVABgAFwATAA4ACgAJAAkACQAHAAMA+//0/+//7f/t/+n/5P/e/9j/1P/T/9X/1f/T/9H/0v/W/9r/3P/f/+X/7v/1//r//f8AAAkAFAAdACIAIgAkACgALAAvAC8AMAAuACoAIwAcABkAFwARAAoAAgD5//L/6//m/+H/3P/Y/9b/1f/S/8//zf/O/9b/3v/k/+T/4v/n//H//v8EAAcACgAOABMAGgAfACMAJwAoACgAJgAmACkALQAqACMAGwAZAB8AIgAgABYABwAAAAAACAASAA0A/f/m/9j/3P/o//H/7//e/8j/tv+x/73/yv/P/8X/tP+r/6v/tP/A/8f/z//V/9z/5//t//b/AgATAC0AQgBTAF0AWgBaAGQAfQCcAKYAmgCAAG4AbgB4AH8AegBhADoAFwAFAAgACwD8/9n/s/+e/5z/nv+Y/4b/c/9t/3P/e/98/3b/cv91/4D/k/+o/7X/tP+q/6f/vf/k/wYAEwAHAP7/AQAVADQATwBiAGkAYQBcAGcAgACZAJ4AkQCKAJMAqgC2AKIAfwBjAGAAbQBuAFsANAADANX/t/+v/7H/pv+A/0z/F//8/gL/Hf84/yv/B//x/gn/VP+a/7v/v//G//r/TQChAOMACQEcAS8BTQGCAcUB6wHhAbEBggF4AXgBVQEMAbIAZAAkANb/e/8Z/67+Qf7h/af9mf12/R39rvxs/I783/wl/Uj9Vf11/aj9D/60/mz/CABSAIIA6ACTAWUC9gI7A1wDgwPTAyYEWQRmBEsEJgTyA58DUAMGA8MCYALCAS0BsgBDAMn/Nv/H/nn+GP6p/Tf97fzW/Mn8xPzC/Kz8n/yz/Oz8Sv2c/eP9I/5A/m3+x/5T/9T/9P/j//T/QwCYALMArACrALoAswB/AEwANQBUAHEARgAGAM//1P/3/+H/7P8aAGQArgCSAIwAwgAnAcABBQIgAjoCRQJ6AqACwwLsAtkClgJAAgEC6wG/AU8BqwARAJ7/R//p/mX+6P1U/bP8Svwn/Gn8i/wj/Jr7Tvu7+778p/1T/ov+ff6y/l//uwCCAtEDVAQZBMkDQwRZBaIGdQdtB9IG3QXrBE0E9APqA5sDfAKaAGb+tfyI+4r6p/nq+CT4+vZZ9eHzQ/Ny8070VfUB9mH2jfY297v4jfrK/Dn/ggGhA/oEJAarB0QJaguJDRkPAhCLD8wOVA76DRkOwA2+DAMLNgh7BTYDkwGqAEb/Df0M+hP3qfVd9WH1+PT883XzZfPv80b19fbq+If6wftN/Wb/FgKfBCwGCwcrCOYJxwt6DNAL8gpGCskJnAhqBhEEywGo/zb9HPq59nvz2/D87sDthuw06+Pp4+jr6Mvpqesv7tHw0/P69in6Rv1KACgEEgkVDoYS3RVQGAIa5RoTHCceXCCCIXcgzR2eGvoW6xN0EWgP/QxWCEYC/Pva9rrzOvHk7hfsW+gA5Xfik+Es4ufiH+Sf5YznOur57H/wpvTx+K79CQKVBi8L+g4CEiIUkxaCGWcbfhtDGtwYbhexFKwQ2Qy7CQAGUwBO+YLzGvDh7EvosuKr3svdfN1m3DHbZtsn3mDhvORd6cXuovTR+Q3/sAW4DCMTvRgDHkcjxieOKlosqS2XLgkvLi4qLO4oSSSZHm0YCxOWDgkKUANj+sLxH+us52zkOOCw2zTXN9VH1GHU+NXa10nbwt5q4tvnxe1O9L759/4+BigOxxQ7GIcavx23IcQkTyXJJFMiwB7UGhIW9BFlDLsFvf5r9hTvJen94zbfDtng06TRONGl0eLRstJi1SLaROCY5xnvEvah/YIFuQ01FyQfbybpLLMxnTfXOgI8xjzuO+M7JDqoNXgwdShIILEYgxGXC+MDu/r577HlON4x2frV2dG3zbDKwMcCx9/Hgctl0RbW99uS4jzpefDR9ur+bAgrEvAbpiJ1JSkllSYNK+cviTEYLoQo3CAFGK8QdAqWBRX/XvXO6lTfada1z9nLd8mtx37HlMXKxODEzchs0v/bquaj7wH2K/7oBrET5CGnLLY0PTrgPjZE5UmyTT1PoUxSSGdF/EDgOs4yIigsHswTzwmjAgL5l+0T4UfVlc/bywfIacPPvUC7KryQvTjA4sQozOrVb9yI4Yno9/IAAPwK+xMcHD8kYir0LBktQi5vMx45VDnIMHAjxBcsEHcKYQVZAL35Re0B2h/I0b+uw7jLC80Bxv+7/LVRue7CINHh4DPs3fFa8xX4PwZbGt8qVjXIOtw/60c4TT9RDlRZU65UilO8Ty5LokBGNiYqoRxfFtkR/Qs+/kDoN9oO00XP2Mr0wnbBpr4UuIOz9bCIuK/C1slA0rPUTthM4XDsH/2JCPsPSRlJH5Yk9Cd1Ko4xFjZ2N1o10CwOJF8YqRDhDL4HbQOf+Kbp19ioyVnGyMpqzefJKMHNu4u8VcCVxiXRXN7I6f7xBfe//t8LoBnkJh4xyDnlRO9L/E7ET8NQBFYvV6hTzU5ESfJEgzssLbkhxxl0FI0LjPzY7wvnjd5508HHNMMlxZzDsrwxtpK2DrwKv2PBI8hP0pTaLN/i5YnziABMBlkJ4xCaHn8o7yd9Jc8neSxuLV8mXh/gG2EWeg2dAqr7uPhi8FXiItaq0UnTL9HQynTGXMfdydvL28+d1pfgluiS76T5cQPSDqkYhB/VKHcygj0WRtVIb0qNS6BNlU5CTiRMPkc1QRk4QDDtJjAeHBjoDT8EVPlI7+Lnjtz+0wHQGs2PyknEkb/TvvC/1sILxuHKcdBX1ibcT+Ij69n04Py7AkIH4A5+FlUawBykHXIfvR96HH8ZgRUxEKIKmwTR/4b5OPL86v/jUN+D2z3a4Nin1Q/UZtQ22IjcP+AC5s3rfPK0+ZIBqAppEuoY4R9OJ40uXjXLOuE92T9VQMBA3kF7QL0+7TogNXovaigJIpcbFRQfDUAFKP2h9Y7tpOaF4Ofb+tcJ1GfQiM0xzUTNYM4R0OTR7dWK2rzfAOW76W3vjvQk+fT9+gINCGsLAQ3dDb8OCg9IDj8MkwmnB4cFrgJ6/ir5RvW/8eHuZO2R6+rqoumc5/rmJOdS6qXuf/Lx9Vf4AvyYAEkFowpBEMEVOhu5HgshTCRXJ4cqVyzbLOkt/C1uLNwp9CZJJHUhsB2yGYcVbxByCpcEi/+J+/j3gfPS7ifqM+bg45nieOEQ4Oze4N7C3zHh0uI95e7noumn62ru6PJE9yL5NvpI+3z9IwBVATgC3gKuArYBBQDg/nX+Af7b/AT7bPn690n37/bi9XH1TPUt9uv3qvi/+Wb7Ov2M/1wBbwO4BtQJNwwHDuMPJhL/Ey4VPxbEF0QZ4xl+GUQYkBapFTUVhxSIE+QQ/Q3DCosHAQabBMECOQCp/Ir5xved9vL1vPTJ8mTxmfDH8GTxf/Hb8U3yzPLd8zf1DvdP+HH4Efkw+jX8+f0S/hz+sf14/dj9Ef6k/lD+Lv0e/P/6jfpG+nL64voN+t74Kfhv+HX59fl0+k37pfsK/NP8Nf4uAJMBswKpA5YECQahBzAJJQq4CoMLXwwNDXgNpA2MDTkNyQxxDBYMcAtpCiUJrwdgBpMFqQRPA7ABKQBV/1D+8vzu+zX76vpV+or5WPlE+T35GvkM+ab5RPqb+tz6JPup+zX8lPzv/Fb9r/0G/kL+Mv4Y/jv+Tv4q/sv9hf2//cn9gf0p/dT8rfyD/Jz8Mv2w/dD9nP13/bn9Cf6H/nH/iQBDARUBpADxAOcB3gJyA/cDlQTOBIAEIQRwBDQFowWgBWkFPgUSBZoEDgTOA+ID1wNhA6MC5AGDASEBqQBHAOX/n/8s/5r+Mf7r/eX92f2s/Zf9j/2a/Y39df2b/en9F/4r/kz+bv6A/qL+vP7j/u3+2f4M/xr/A//b/t7+Ev8V//r+0/6t/on+eP6v/gn/LP8H/+D+B/88/13
" Your browser does not support the audio element.\n",
" </audio>\n",
" "
],
"text/plain": [
"<IPython.lib.display.Audio object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAR4CAYAAABQAE75AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XmYbXdVJ/zvqrpTBkJGIEDkBglj0BeIDC0CiggIr/p0C40DjTigtqiIrQx2A41N4yy0jUNakbxqi8DbDdEXRcYeFIGANkMYDAFCBoaQkDn33qrze/84deF6c+u3z01VnV1V9/N5nvPcqrP22XvVuVW1T62z9vpVay0AAAAAQxbGTgAAAADYGhQRAAAAgJkoIgAAAAAzUUQAAAAAZqKIAAAAAMxEEQEAAACYiSICAAAAMBNFBAAAAGAmiggAAADATHaMncBmsKt2tz05Yew0ANhEasdif4NJG9xHa5OBDY4ioSOpoQTWuH8ANp1a7J+f2mTg3JOkdu/qbzB0jlteWjV0y+TG7J/cOnSG2nIe/80ntC9ds7zhx3n/B/e9pbX2hA0/0BooIiTZkxPysHrs2GkAME/Vf32zeMqp3Xi7+ZbBQ7T9+/vxGQoRPbXQ/xra0uov8gDYpIbOT3c8uRuf3HjT4CEW9n5NP4X9B7rx9qVrV429+8Y3DR5/K/rSNct571v6z9t6WDzzH0/f8IOskSICAAAAdLQkkwx3eRwLzEQAAAAAZqITAYBjU+tfSrB89Zf6jx9oN10XAzkOjVwAYOtZPLl/ucK+B9+zG//UM4YvlTv+xH3d+D1+8ub+DnbvXj1203Z9n7pl2Yk3iU4EAAAAYEY6EQAAAKBjOhPBskeJTgQAAABgRooIAAAAwExczgAAt8fA0EMAOJLa0f8T7OO/tbcbP/P0a7vxu/6XMwZzOOmtl3TjbWc/x7b/wOrByfYdPmiJxymdCAAAAMBMdCIAAABAR0vLsi7EJDoRAAAAgBnpRAAAAIABlnic0okAAAAAzEQnAgAAwDqpnbu68Y//56/vxk/+u53d+B0uGFhZYf8V3XiSLB9Y6sYXTji+f4xbblk91rbnCgYtybJOhCQ6EQAAAIAZ6UQAAACAAWYiTOlEAAAAAGaiEwEAAAA6WpLlphMhUUQAAACYWlgc3mRXf/Dhjd/eH5x43GX9Y9zpt9/TjU+GBheuwx+6k5tuvv0P9nf2tqeIAAAAAAO257oTR89MBAAAAGAmOhEAAACgo6Vl2bUaSXQiAAAAADPSiQAAt0fV2vdhyjPAXNWO/p8/Vz37oYP7+PPn/ko3/vOfPb4bP/EJB7rxyWR5MIeuWc5PA+efHWfeuf/wm29Z/fDXDQ+n3JJasuy0nUQnAgAAADAjnQgAAADQ0WJ1hoN0IgAAAAAz0YkAAAAAXZXlrMM8pG1AEQEAbg9DEQHW38BQwM/91CO68f/6M7/ejT9g13Hd+P3/9r7deJL86AOe2I1Pbry2v4ONPn+sw/6XrrhyDYdf42BINj1FBAAAAOhoSSbeP0hiJgIAAAAwI50IAAAAMMBMhCmdCAAAAMBMdCIAAABzsXDCCd34Xd/ef6f3C5+/phv/+Uc/tRtf+sxnu/Gz8uFuPEkmg1uwHbXoRDhIJwIAAAAwE50IAAAAMGDSdCIkOhEAAACAGelEAAAAgA4zEb5KJwIAAAAwE50IAADA+qj+O7Wf+N17d+M3/vKubvxOb3xvN77UWjcOt1dLZdl78El0IgAAAAAz0okAAAAAA6zOMKUTAQAAAJiJTgQAAADosDrDVykiAAAAWTzppG58+frrB/fxqZc/vBs//oP9P8KO/+9/O3gMBgwMt0ySGEDJGigiAAAAQFdluZkGkJiJAAAAAMxIJwIAAAB0tCQT78En0YkAAAAAzEgnAgAAMDg4sXbuGtzH0CXjd/1VgxM3nKGJG8bqDFM6EQAAAICZ6EQAAACAjtasznCQZwEAAACYiU4EAAAAGDAxEyGJIgIAADCDT73kIYPb3OsXP9yNT9YrGWA0iggAAADQ0ZIsmwaQxEwEAAAAYEY6EQAAAKDL6gwHeRYAAACAmehEAAAAgI6WZOI9+CSKCAAAsPFqHZaGa23t++i48akP78YP3HF4bYXJDTesVzrAJqWIAAAAAAOW2zoUA7cB/RgAAADATHQiAAAAQEdLZdl78El0IgAAAAAz0okAAABD1joYcYOHIiZJ7dzVjV/9jId04/uedF03fs4//+hR5wTbyaR5Dz7RiQAAAADMSCcCAAAAdLTETIQVngUAAABgJjoRAAAAoKOlstzWOBtlm1BEAACAIXMYjLhWCycc141/6bzlbvx+z7yiG1/eAs8BsPFczgAAAADMRCcCAAAADJh4Dz6JTgQAAABgRjoRAAAAoKO1ZLl5Dz5RRAAAgG3hwAPv2Y3f93dv7MaXv3zdeqYDbFOKCAAAANBVmcQSj4mZCAAAAMCMdCIAAABAR4uZCAd5FgAAAICZ6EQAAIAtYOH447vxm36hPxjxhCdcup7pwDFn2XvwSXQiAAAAADPSiQAAAAAdLZVJszpDohMBAAAAmJFOBAAAABhgJsKUZwEAAACYiU4EAAC2vdq9ux+v/rXOk/0H+geYLA8kMHwt9Sd/9WHd+Fuf8mvd+LMf+bRufGkwA2b5f0prG5/H2Iaeh2PhOThMSzJp3oNPdCIAAAAAM9KJAAAAAF2V5VidIdGJAAAAAMxIEQEAAAA6Ds5E2OjbkKp6QlV9vKouqarnHyH+NVX1zqr6+6r6YFV9+3o/Fy5nAABgY22CIW21a1c3PrnhhrXtf2d//0uPPHdwHztu6v8B8WN7v6m/g3b54DEYcAwODDwiz8OmVFWLSV6V5HFJLk/yvqq6sLV28SGb/dskr2ut/U5V3T/Jm5PsXc88FBEAAABgwCaYifDQJJe01i5Nkqp6bZLvTHJoEaElOWnl4zsmuXK9k1BEAAAAgM3h9Kq66JDPz2+tnb/y8d2SfPaQ2OVJDl8b9iVJ/rqqfjLJCUm+db0TVEQAAACAjtZqppkF6+Dq1tp5q8SO1Apx+LUn35PkNa21X6+qRyT5o6o6t7U2Wa8EDVYEAACAze/yJGcd8vndc9vLFX4oyeuSpLX27iR7kpy+nkls6U6EqvqZJD+cafXlQ0memeTMJK9NcmqSDyR5emtt/2hJAgBsc7V7dzfe9u1b+zEGBhe25eVufK2DE4eGQ17zxnt043fYffXgIfY+oX/pctvoYXcLi/34pP8cr9s+2PS6P/P7Rp8bsGGW59OJ0PO+JOdU1dlJrkjytCTfe9g2lyV5bJLXVNX9Mi0ifHE9kxj9Wbi9qupuSX4qyXmttXOTLGb6JP5ykt9srZ2T5NpMKzEAAACwZbXWlpI8O8lbknw001UYPlJVL62q71jZ7GeT/EhV/Z8kf5rkB9o6VyC3dCdCpvkfV1UHkhyf5Kok35KvVmMuyHSwxO+Mkh0AAABbXksyGX91hrTW3pzpso2H3veiQz6+OMk3bmQOW7YTobV2RZJfy7Rd46ok1yV5f5Ivr1Rokuk1I3c70uOr6llVdVFVXXQga2+xAwAAgO1uy3YiVNUpma6JeXaSLyd5fZInHmHTI7ZurCyTcX6SnFSnbvAFZgAAAGxdtRlmImwKW7aIkOl6l59qrX0xSarqvyX5Z0lOrqodK90IR5pWCQDA0RgYKtj2r22Gde0Yfkm6cNyebnz5+us3NIfJNzygGz/+Vf3Bjzvf/sHBHNrS0uA2G2o9VoAzOHF0s/w8tUn/PdRa7A/IXOgMVqwD47f8s7G2cinlsiQPr6rjq6oynUB5cZJ3JvnulW2ekeRNI+UHAADANtCSTFpt+G0r2LJFhNbae5K8IdNlHD+U6ddyfpLnJXluVV2S5LQkfzBakgAAALCNbOXLGdJae3GSFx9296VJHjpCOgAAAGxTy1v3Pfh15VkAAAAAZrKlOxEAAFgHA4MTB7X+kLbF007tP/4uZwwf4pOfOZqMbqPOO7cb/5U3/H43/qLPnNbf/zdf3Y23GQYODg3EGxz+uG9g2fKB/6fBOFvCegz
"text/plain": [
"<matplotlib.figure.Figure at 0x7f8cee965c18>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
2018-02-13 16:33:14 +00:00
"source": [
"sentence = \"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.\"\n",
"model.decoder.max_decoder_steps = 250\n",
"alignment = tts(model, sentence, CONFIG, use_cuda, ap)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Run-time: 13.074267864227295\n"
]
},
{
"data": {
"text/html": [
"\n",
" <audio controls=\"controls\" >\n",
" <source src=\"data:audio/wav;base64,UklGRuCrAQBXQVZFZm10IBAAAAABAAEAIE4AAECcAAACABAAZGF0YbyrAQAAAAAAAAAAAAAAAAAAAAAAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAQABAAEAAAAAAAAAAAAAAAAAAAAAAAAA/////////v/+//3//f/9//z//P/7//v/+//6//r/+v/5//n/+f/4//j/+P/4//j/9//3//f/9//3//j/+P/4//n/+f/6//r/+//7//z//f/+//7///8AAAAAAQACAAMABAAFAAUABgAHAAgACAAJAAkACgAKAAoACgAKAAoACgAKAAoACgAJAAkACAAIAAcABwAGAAYABQAFAAQABAAEAAMAAwADAAMAAwADAAMAAwADAAMAAwAEAAQABAAEAAQABAAEAAQAAwADAAMAAgACAAEAAAAAAP/////+//3/+//6//n/+P/2//X/9P/y//H/8P/v/+7/7v/t/+z/6//q/+r/6f/p/+n/6f/p/+r/6v/q/+v/7P/t/+7/7//w//L/9P/1//f/+f/7//3/AAABAAMABQAIAAoADQAPABEAFAAWABgAGgAbAB0AHwAgACAAIQAiACIAIgAiACEAIQAgAB8AHQAcABoAGAAXABUAEwARAA8ADgAMAAoACAAHAAYABQAEAAMAAwACAAIAAgACAAIAAgACAAIAAgACAAIAAgACAAEAAAAAAAAA///9//v/+f/3//T/8v/v/+z/6f/l/+L/3v/b/9f/0//Q/8z/yf/G/8P/wP++/7z/u/+5/7j/uP+4/7n/uv+8/77/wf/E/8f/y//Q/9T/2v/g/+b/7f/z//r/AQAIAA8AFwAeACYALgA2AD0ARQBMAFMAWgBfAGUAagBvAHMAdgB5AHsAfAB8AHwAegB4AHQAcABsAGcAYQBaAFMATABEADwANAArACIAGQARAAkAAQD6//P/7P/l/97/2P/S/83/x//C/77/uf+1/7H/rv+q/6f/pP+g/57/m/+Y/5b/lP+S/5H/kP+P/47/jv+O/4//kP+R/5T/lv+a/57/o/+o/67/tf+8/8T/zP/V/97/5//x//v/BAAPABkAIwAtADcAQABIAFEAWABfAGUAawBwAHQAdwB5AHsAfAB8AHsAegB4AHYAcgBvAGsAZgBiAF0AVwBSAEwARgBAADoANAAuACgAIwAdABgAEwAOAAkABAAAAP3/+v/2//L/7//s/+n/5v/j/+D/3v/b/9j/1f/T/9D/zf/K/8f/xP/A/73/uv+3/7P/sP+t/6r/qP+m/6T/o/+i/6L/o/+k/6X/qP+r/6//tP+5/77/xf/L/9L/2f/g/+f/7//2//3/BAALABEAFwAdACIAJgArAC4AMQA0ADYAOAA6ADwAPQA+AD8AQABAAEAAQQBBAEEAQQBBAEIAQQBBAEEAQAA/AD4APQA7ADoAOQA2ADQAMQAuACsAKAAkACEAHQAZABUAEQANAAgABQABAP7/+v/1//L/7//s/+n/5f/i/9//3f/a/9f/1f/T/9H/0P/P/83/zf/M/8v/yv/J/8n/yv/K/8v/yv/L/8z/zf/N/87/zv/P/9D/0f/T/9T/1v/Y/9j/2v/d/9//4//l/+j/6//u//L/9v/6//7/AQAGAAoADgASABcAGwAgACMAJgApACwALwAyADUANwA5ADoAOgA6ADsAOwA6ADoAOQA5ADgANwA1ADIAMQAvACwAKgAoACYAIwAhAB4AHAAYABYAEgAOAAkABgADAAEAAAD9//r/9v/y/+//7P/p/+f/5f/k/+L/4f/g/9//3f/c/9v/2//b/9v/3P/d/9//3//f/9//3v/f/9//3//h/+P/4//l/+X/5P/j/+L/4//k/+X/5v/o/+n/6v/q/+r/6v/s/+//8P/y//P/9v/5//z//f///wEABAAFAAcACQAOABIAFAAWABgAGgAcACAAIwAlACcAKAAsACwAKgAsAC0ALwAxADAAMQAvACwAKgAnACYAIwAjACMAIAAdABkAFAARAA4ADAAJAAQAAgAAAP/////7//f/9P/x//D/7P/q/+n/6P/o/+b/5P/h/9//3//g/97/3P/b/93/4v/j/+L/4P/i/+P/5P/p/+r/7P/w//L/8//z//T/+v////7//P/9//7/AAAAAAEAAQABAAMAAQD+//r/+v/+/wAA///+//v/+f/8//z//P/7//n//P8AAAIAAgABAAQABAAEAAQACAAOABMAEwAUABMADwAUABgAHAAdAB0AIAAhACQAJQAjAB4AHAAcAB0AIAAiACQAHAAVABIAEAAOAAsACQAGAAQA/f/5//v/+v/3//X/7//r/+v/6f/o/+X/4v/j/+L/5P/n/+L/5P/e/9f/2v/a/+D/5P/k/+r/6f/o/+3/7f/u//D/8//4//n///8CAAAAAAAAAAQACwAQAAsAAgD9//n/CgAWAA8ACgADAAQAAwADAAQABgAKAAwADwABAPj//v8IABIAEQAJAAIABwAIAA4ADgAGAA8ADwANAA8ACgAQABQAGAAXABEAFAAUABsAGgATABoAHAAkAB4AGQAdABMAGAAXABAADQAIABgAEwADAAUA/f/7//X/6//0//D/7f/z/+n/2f/X/97/5v/o/9f/z//N/8X/z//d/+X/3v/H/7v/w//R/9n/3//f/87/wf/B/87/4v/3/wEA+f/g/9H/4f/6/xcAGwARAAcAAQAOABcAIwAmACgAIQAUABsAIwAjACIAGwAZACEAJAAcAA8ACAAbABkADAALAA4AHgARABMAFwAcADQAMwAwABUAEgA9AFQAVgBTAEkAUABcAGYAYQBdAGAAXgBjAE4AWQBRAEcAUQA3AC0AEwD6/wIA9//p/9z/yP+2/43/k/+c/4//fv9Y/1v/Vf9b/2j/Pv9C/03/Wf9p/0n/T/9A/1D/ff+M/5v/l/+M/4D/f/97/5n/0/8IAAcA1/+0/6j/yf8KADsARQA1ABgAEAAaAEgAcQCAAJsAjACAAIAAdQCIALwA3wDfAMwAqgCoAMEA6ADyANkAyQDUAOEA2wC8ALAAyQC4ALIAugCyAJ0AdABpAHcAdwBcAEUAQABHACMABQAFAOH/0P/G/7z/tv+g/5L/hv9X/xn/Fv8w/zX/Mv8M//D++v7j/uv+yP6a/sf+2v4T/x3/sf6V/pP+0f44/yb/GP/+/tn+3f4A/xT/Tv+d/4//if88/xX/bf/H/xAA6P+y/7z/CQBmAHQAkACLAIwAnQDIAPUAJAGCAaIB2gHLAaQB3QEQAlICPALnAQoCfQK2Ap8CVAL/AdwB1AG+AZIBZgFqAWABIAGmAEMAKgAZABEAn/8q/w3/D/9T/zr/7P7R/oz+gf6Z/mn+o/79/i//W/8A/6b+xP78/mz/rf9c/zL/Af8F/z3/IP8h/xD/7v63/jj+6P3P/e39Kv4B/n39If3v/Nr8Ev01/XX9av0//Vj9Xf2f/fr9h/4C/3z/uf/6/1IAewAfAawBRQLyAkMDxwPuA78DHgSTBA0FeAVyBToF6gSXBJwE0gTKBHYEBgSJA/QCewIQAsgBigEaAa8ALAB3/xf/7v7k/uv+pv6M/mb+If4T/gr+Yv7o/kj/nv95/0j/Iv9B/+n/YgCXAEwAsv8+/xj/Vv9Y/x7/bf5z/fj8jfwk/Mf7UPuj+iv6h/kI+Qr51vgD+dD4Jfgp+HL4T/l7+tf6EvuS+xn8J/3G/vz/FgEFAq0C7AMsBUsGlgdWCO0IZAm9CaAKZgvmC88LFQs9CsAJtgmtCVwJXggCB7UFEASnAtsBHwH8AP3/Iv57/Lj6QfpR+lv6Ufqt+fr4aPhP+M346vkQ+9P7QPyL/DD9Sv5r/6gAHQLwAtEDMQThA20EGAUDBpgG3wWYBJUDsAIbAtcBzACX/9L9cfvN+UH4VffU9oj1Q/Sn8gjxh/C68E7x2/G28avxePLM84z1mvcj+Qj7Hf3Y/gUBhQNnBi8JWQsnDCQNuQ76EIgTdhSFFDcUehMPE3oSCxJIEoU
" Your browser does not support the audio element.\n",
" </audio>\n",
" "
],
"text/plain": [
"<IPython.lib.display.Audio object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAR4CAYAAABQAE75AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xu4pXdZH/zvPTuZBAIIIYI0QQIaFERFGzkULw7lqGih16u8oCBVK1bhFQVbU7SAqNXaKlJFr8YaobVvAXkFUxqNchK1IkRRhAASEUg4BBJOAXKY2ft+/9hrYDvMrLUy85v1rL3n87mudc06PHOve61n7/3s/Vvf5/er7g4AAADAIvumbgAAAADYHQwiAAAAAEsxiAAAAAAsxSACAAAAsBSDCAAAAMBSDCIAAAAASzGIAAAAACzFIAIAAACwFIMIAAAAwFJOmbqBdbC/TuvTc8aYYlVj6hzSPbYeMFTf+pZD6+377I3jig3++dED69VJ9LNyaGdr/DoBjtngQ0LVGn9OOvr4N1BvbQ2pc0N/Jjf1Dev7Qo/RIx9yRl/7sc0T/jx/8dYbL+3uR53wJzoOBhGSnJ4zct966JBader+IXUO6YMHBhbzyyeMdvC+/3hovdP+8j3DavVNNw2rlSR98OCwWrWxMaxWkmTQLz4nQm+O660PjN2nHIPRfwCM/GNn68T/cgsnQp0y9k+S2j/w9/HBx6vaWN8Bjq3rbxhS5403/t6QOuvm2o9t5k2XfukJf56NO737rBP+JMfJIAIAAADM0Um2sr4fWqzS+g6FAQAAAGtFEgEAAADm6my2JEIiiQAAAAAsSRIBAAAA5tieE8FE9YkkAgAAALAkgwgAAADAUpzOAAAAAAtY4nGbJAIAAACwFEkEAAAAmKPT2WwTKyaSCAAAAMCSJBEAAABgAUs8bpNEAAAAAJYiiQAAAABzdJJNSYQkkggAAADAkiQRAAAAYAFzImyTRAAAAACWIokAAAAAc3SSzZZESAwiDNcHbpq6BWCFTnntXw6tt1njAmK1r4bVSpLeGnfg7AMHh9VKxr7Wka9zVnBsPaY1+hfI3hxbj2nt2xhbb2vc10edun9YrSTJwJ+7Vz7zHw+rlSRvfeqvDKv16b5xWK0k+dEPPGxYrcs+fOdhtZLk1hfdZkidrde/fkgd1pdBBAAAAFjAxwLbzIkAAAAALEUSAQAAAObodDatzpBEEgEAAABYkiQCAAAAzNPJpiBCEkkEAAAAYEmSCAAAADBHx+oMh0giAAAAAEuRRAAAAIC5KpupqZtYC5IIAAAAwFIkEQAAAGCOTrJldYYkkggAAADAkiQRAAAAYAFzImyTRAAAAACWIokAAAAAc3QkEQ6RRAAAAACWIokAAAAAC2y1JEIiiQAAAAAsSRIBAAAA5jAnwudJIgAAAABLkUQAOB7dg+ttjiu1NazU2juZXiswVp26f1itfeeeM6xWkqTGfep5zf3vMKxWklz6078wrNbXX/I1w2olyaPvcp9xxWr0Z64HhlW6w+a7h9VKktrYGFJn34Hrh9RZN53Kps/gk0giAAAAAEuSRAAAAIAFrM6wTRIBAAAAWIokAgAAAMxhdYbPk0QAAAAAliKJAAAAAHNVNttn8IkkAgAAALAkSQQAAACYo5Ns+Qw+iSQCAAAAsCRJBAAAAFjA6gzbJBEAAACApUgiAAAAwBzdVmc4xLsAAAAALEUSAQAAABbYMidCEkkEAAAAYEmSCAAAADBHJ9n0GXwSSQQAAABgSZIIAAAAMJfVGQ7xLgAAAABLkUQAAACAOTrJls/gkxhEAABgl6lTxv0Ku++8c4fVetBL3zKsVpI88lZvG1brJ9732GG1kuQ7v+bRw2rd/ZN/OaxWkvTW5rhiNXhJv+6x9QYa9r6t8WtkDIMIAAAAsMBmDx5U2qXkMQAAAIClSCIAAADAHJ3Kps/gk0giAAAAAEuSRAAAAIAFttpn8IkkAgAAALAkSQQAAACYoxNzIsx4FwAAAIClSCIAAADAHJ3KZtfUbawFSQQAAABgKQYRAAAAgKU4nQEAAAAW2PIZfBJJBAAAAGBJkggAAAAwR3ey2T6DTyQRAAAAYFeoqkdV1buq6oqquuAIj39pVb2uqt5SVW+tqm8e3YMkAgAAAMxV2cq0SzxW1UaSFyZ5eJKrkry5qi7u7st3bPYTSV7W3b9WVfdMckmSc0f2IYkAAAAA6+8+Sa7o7vd0901JXpLkMYdt00luM7v+RUk+OLoJSQQAAACYo7OyORHOqqrLdty+sLsvnF0/O8mVOx67Ksl9D/v/z03yB1X1/yQ5I8nDRjdoEAEAAADWwzXdff5RHjvS+RR92O0nJHlRd/9CVd0/yX+vqnt199aoBg0iAOxV+zam7uDoxh3HxqvBnzJsbY6tB7vQjY/+hqH17v28twyr9aWnXbZ4oyW95lu/elitJHndlV80sNpHB9ZK+uDBofXWVh/+99lxqmnPqZ+nNgb93rCHvzQ2p58N4Kokd95x+5x84ekK35vkUUnS3X9WVacnOSvJR0Y1Mfm7AAAAACz05iTnVdVdq2p/kscnufiwbd6f5KFJUlX3SHJ6Bo8iSiIAAADAHJ3KVk+bJOnug1X1tCSXJtlIclF3v72qnpfksu6+OMkzk/x6Vf1Itk91+BfdYyM1BhEAAABgF+juS7K9bOPO+5694/rlSR5wInswiAAAAAALrMGcCGvBuwAAAAAsRRIBAAAA5ugkW+0z+EQSAQAAAFjSrh1EqKo7V9XrquodVfX2qnr67P4zq+oPq+rds39vN3WvAAAA7GaVzRVcdoNdO4iQ5GCSZ3b3PZLcL8lTq+qeSS5I8pruPi/Ja2a3AQAAgOO0a+dE6O4PJfnQ7Pp1VfWOJGcneUySB882e3GS1yf5sQlaBAAAYA8wJ8Ln7Yl3oarOTfJ1Sf48yR1nAwyHBhruMF1nAAAAsHfs2iTCIVV1qyT/X5If7u5PVS13HklVPSXJU5Lk9NzyxDUIAADArrdb5iw40XZ1EqGqTs32AML/6O7fmd19dVXdafb4nZJ85Ej/t7sv7O7zu/v8U3PaahoGAACAXWzXDiLUduTgN5K8o7t/ccdDFyd58uz6k5P87qp7AwAAYO/ormz1vhN+2Q128+kMD0jypCR/U1V/NbvvWUl+LsnLqup7k7w/ybdP1B8AAADsKbt2EKG7/yQ56kkpD11lLwAAAOxtm7skKXCieRcAAACApezaJAIAAACsQifZsjpDEkkEAAAAYEmSCAAAADBXmRNhxiACwF61tTl1B7tTe9/YpWpszPaUu9x5WK0bn/7RYbWS5G+fcJdxtT72RcNqbV334WG1kqQPHhxab13VKWP/JFnr9617XK3B3/O9Nai3gS+R9WQQAQAAAOboJFttToTEnAgAAADAkiQRAAAAYIFNn8EnkUQAAAAAliSJAAAAAHN0ypwIM5IIAAAAwFIkEQAAAGCBLZ/BJ5FEAAAAAJYkiQAAAABzdCeb5kRIIokAAAAALEkSAQAAABawOsM2SQQAAABgKZIIAAAAMEenstU+g08kEQAAAIAlSSIAAADAApsxJ0IiiQAAAAAsSRIBAAAA5uhYneEQSQQAAABgKZIIAAAAMJfVGQ7xLgAAAABLkUQA2Kv2bUzdwdH11tQdrE731B1wkti4592H1vu+V/7vYbUufMw3D6uVJH3Lgb/Cvv8zw0r1jTcOq3Uy6YMHp25hdxp8fKmNQef77+FD/JbVGZJIIgAAAABLkkQAAACAObqTTaszJJFEAAAAAJYkiQAAAAALWJ1hm3cBAAAAWIokAgAAAMzRqWyZEyGJJAIAAACwJEkEAAAAWGArkgiJJAIAAACwJEkEAAAAmKMTcyLMSCIAAAAASzGIAAAAACzF6QwAAACwwFb7DD6RRAAAAACWJIkAAAAA83SZWHFGEgEAAABYiiQCAAAAzNFJtiKJkEgiAAAAAEuSRAAAAIAFzImwTRIBAAAAWIokAsBetbU5tl4NHH3vHleL9TDy62O0df56G/i+nfnrVw+rlSS//pAHDau1+cG/G1YrSdJ
"text/plain": [
"<matplotlib.figure.Figure at 0x7f8cf0213828>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sentence = \"Be a voice, not an echo.\" # 'echo' is not in training set. \n",
"alignment = tts(model, sentence, CONFIG, use_cuda, ap)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Run-time: 12.174984216690063\n"
]
},
{
"data": {
"text/html": [
"\n",
" <audio controls=\"controls\" >\n",
" <source src=\"data:audio/wav;base64,UklGRjBvAgBXQVZFZm10IBAAAAABAAEAIE4AAECcAAACABAAZGF0YQxvAgD1/wYAAAD8/wsABgAQAPf/5v8DABcALQAWAA0AHAASADAALQAlAB4AFgAdAP3/FgAoABUACQDv//D/7//v/+3/1P/S/+n/5P/k/+r/7v/p//L/AAD1//v/EAAhABcAAwAFAC8ANwA4ABwAAgAnABAADAAEAPP/EgAEAA8AAADa/+v/5f/2/9P/vP/d/9D/+/8BAPj/AADc/9n/2P/t/xoAIQAJABUAJwAoADYALwAiAPz/9v80ADsAOAA4AAoAAAD0//T/+P/U/+T/8//u/wYA9f/u/97/vP/m/9f/8v8zABMAGAARACcAQwAPACwAKgAiAGgAVwA3ADEAJwAeAAkAFAAHANf/5f/7/8b/tv/F/7T/mf99/7//mf9x/7v/lP+w/7//sP+5/7P/EAAFAL7/4v/x/xQAEgD9/wwACgA7AC8AAAANAEUAVgAuADQAVQBJACoAWQA8AAIAUwBLAC8AOwA6AF0AGAAcAEYAHwBMADUAPwCNAG0AewBAACQAdQBRAFUAMgAzAE4A/v8WABoA/P/6/4r/kf/W/33/lP+A/z3/eP9x/3H/Yv9f/3T/Mv+T/9b/R/95/53/df/J/6D/fP+p/47/rf+q/87/uf8+/wcA0P90//f/b/+q/7n/jP/R/7//8/8SALn/HACkABoANwBtAHUAvADSALUA3gBXATsBNgH/ANIB3gEDAZUBYwE8Aj8CSwH3Ab4BjQFXAacAJwHPATAB3gCvAGQAogC0//7+Nv99/7L/Rv/h/tf+jv7x/X39U/15/XT9S/0S/av9Qv42/V78Pvy2/KX9e/2M/dH95P2+/kH+Lv5s/q3+Pv/g/rH/MwDYAGkBzgDkAKMACwHBAcABiQLSAisD/gJ8AsQCsQLOAnYClAImA2QDmANkAxcD2wKsAloCIAIEAooC8QI/ArEBcQGfAZ4B5gCwAF8AfgCRAPT/5//F/0cA+f/c/sH+oP7//nb+j/14/TD9Pf24/B78wvtV+yz7ivo2+kT6evqi+v/55fk7+uz6sPt++6r7GfwJ/SH+X/7i/lT/DQAiAYgBBwJdArkCWANDA20DygMnBJ4EJQSgA5EDuwP8A18DuwK1AtQCEAPDAmkCagKLAscCoQKdAgADmgMnBD8ESwTABHUFCAb7BbUF0QUVBkwGGQapBTAFowQDBCYDQgJzAWoA+v5k/Sb8ZvuM+mf5/PeO9oP1qPT282zzE/PU8oPyQPJs8ujyTvOT8xL0HvVg9lj3/PfR+Pb5XvvG/A/+OP8aAPEA1gHyAjkEeQV/Bg0HagfhB5UIQgmNCZwJxAkMCksKegq3CvkKyQoeCnUJVQmxCRsKHgofCm8Kvgq+ChYKeAk5CSgJRQlcCYUJTQlPCAMHswWCBBsDZAHZ/23+7fwM+9L4iPYy9O7xru+r7eLrWOoW6d7nEud85i/mMuZR5vHm7+d16aTr8u0k8CPybvRU9036AP2X/2YCKAWcB7EJvAu9DQAP6w+vEH0RTxJpEl0SARIvEWMQTA96DroNnQyeCz4K9QjtB9gGRQawBUwF/QRuBCwESAQOBSIG0QZCB8MHlAiSCXwKXgsCDEMMIQzNC2cLqwpWCVUH9QRoAsf/4vzD+ZL27PII7w3rkOfo5Ebi3d+h3fzbQtuX2qDaatv13CzfDeGA48Hmqurx7rXyuvYV+3r/uwN5B0ILvQ6ZEf0T7BXvF3wZchrRGokaQBqUGWgYyRYbFZATtBFbDw8NoAs/CkUI2AXmA3MDKgNBAnoBPQEkAv0CcwO1BEwGHghYCQ0KiQtLDfcO/g9IELgQrxC6DyEOGgwNChUHAQPB/gL7oveT83vuEOli5BLgCNxa2KnVcdQk0wbShNFQ0p7UmNbI2Lrbv9/y5OHpHe+z9B36Rf+eA0sIKA2lEZoVfBhaG70dMh/vH+gf9B+GHzwexxwbG5oZpxfWFC8Sbw8ADWEKfgehBTwEJAMSAtgAVABMAF8A3QCdARsDrAXcB7YJWAv9DCAPaxCTEUATfBS7FGwT5xH0EPEObAuoBk8Ci/7q+fb0GfCU603mvt/A2brVbtNt0d3OpMzHy1DMn81mz7vRutRi2EXcReF05/DtYPRs+Wb+ugPfCH0OWxPuF7kb8h3BH1EhAyNjJDwkUiOYIbwfMR4wHJgaMBgzFUQSqA5+CwgJCgfkBQAEgAFqAAIAlgDoAAkAPQCPAUIEige/CXQLGg2MDg4QAxLVE5cVUxaTFY0UyxJuEH0NtAnqBeUB2/ym95jyFO1F56Hg9tpe19zT+dDTzSrLIcodyRfJWsoEzXHRKdWK12fbYOGN6CPu8fGy9/f++wUFC5kOXhM/GAIcoh2THlkhdiRLJs0kaCK2IW8hkyBDHU0a3Bg9F0AVUBGDDQ8LHAkKCPAFUgQPBGQDSALI/3v/ZwKnBUoHUwanBlkJqAzpDrkPuxB0EooTIBOSEo0SchIhED8M4ggiBgEDwf1g903yiu676pPltN8C2+zWO9MA0IXOic4bzqXMYMvZzHXQvNQZ2FDbdN+f44no3O3I8/H5q/6rA3EIeg1VEoYVuhhBGhAcnR7CIMMiPSLRIBwg4x46HroclRp5GeoWihQwEtEPHA6uC5QJPAh2B40GCwV4A+4C3wOGBXsGXgZnBnAHLglxC0QNaw7iDtUOgw+VENIQww94DVkLhQqOCFMFdwEU/Sr5+PS18HrtiOln5fvgHtzW2azXNdYW1YfTOtO50gbTMdX6177adt3t3wLkHegw7BvxAPVw+f79JgKiBhAKDA2pEGcTOBWxFosYJBtDHEYbmhoVG1IbMxqcGBAYDhgTFr4SKxGzEBEQew56DBYL8AnMCIsHwAb4BtAHkAd1BlwGkQf9CO8I+AgxClILrwsCCzgLgww+DHkKBwndBzIHUwUoAsX/1Pxx+gr4R/Q28QnuT+vv6HHlueJq4c3g6d5s3VTdLt1o3Tjd/d5U4Z/ituS15jTppexl7yzysfVs+RX9Vv8+AcIEXwiDCmUMcA77ECoSCRLqEjoURRVeFR8VvhRAFOUTPBOVEvQRLRHlD3EOlg2wDdwMEQsGCoUJvAlsCIAHgQeKBx4IKwdGBmIGFweECCMIpwYxBlUGAQdvBvYFpwWDBNYCtgDI//P/4/4K/GD5f/fR9qX17PJI8Rvwxu5d7YjrIOu06sfpMumy6Pfpbur06RvrAevN7Dfvsu9S8YHyq/Rm94P4HPpG/BX+bADMAUUDiAWZBjgHHwhoCQALaQyoDIkMfAy6DMQNFg4bDlkNwgxPDTkNTQ0hDNAL7wvlCrEKcQq6Cq0J/QcgCHsI5QdpB6cGAgbsBRYFtQRYBA8EIAQAA7YBOgHtAIsA5ADB/3n9Uf3u/An8Dft6+pz6Wvlm9/n2hPcw9tD1ovVz9N/0NfS29FD12/O881z0kvT09Pv1EfYL9/72NfaQ+E/5VPmG+kH75fxe/R39bP9DAGIAiAHUATIDFASRBJ0FVAWEBeQGaAZ/BokHpgfQBxkH+gacCN4IyAa/BgYHXQeYCEsH+gZNBj8FYgaJBkoGbQXOBE4FoAMPA9sD0AJdA1AD4AHvAAQAMwATAMr/zv/8/mL+Ev6r/Fj81fyp/Oz7sfty/PX7tPpd+YP5/fpT+xT7avoS+pL6BPol+mz6ifvS/Ir7qPrd+nv8evwb/IL9Hv57/fr8xP2W/t3+bP8KADv/BP+sAKUB+gC/AcEBKQGlAZEC9QPhAm4CMAMABMsDfwJoAwAEkwOpA2UDCAQoBFgDiQL1AdMCIgQKBGwC/AE+AmACcQLxAZEBCgKQAXgBzgEyAIAATAF2AAkAs/+l/0cAMP/S/sr+If4B/w3/Lv7r/FD9Qf5t/pX9Nvzt/Gr+q/3J/Nr8S/1G/mz9Q/1j/TT+qP6c/cP9Tv4R/xL+7f4jALX+0/6i/mj/dgDU/1MAdABh/6b/xQA/AfMAqgAFAQEBGQEhAQMBVQGYAWYB5AGzAdYAaAGUASg
" Your browser does not support the audio element.\n",
" </audio>\n",
" "
],
"text/plain": [
"<IPython.lib.display.Audio object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAR4CAYAAABQAE75AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xu8pWdZH/zfNXsmB0IghHCICZKgAcXgoUYOpQUPIFR4gb5VXrDSFKmxVaotWkHbAqJWsbZiLdamisTWCkgVqMUicqhWkJMiyEnCOYSDCSEEkszM3ut6/9h7cBhm9l7PM3uvZ6893+/nsz6zDs+173uv2Ye1r/V77ru6OwAAAABb2Tf1BAAAAIDloIkAAAAAzEUTAQAAAJiLJgIAAAAwF00EAAAAYC6aCAAAAMBcNBEAAACAuWgiAAAAAHPRRAAAAADmsn/qCewGp9XpfUbOmnoacMqrAwfGFa4sph/aI8epQ4eHF62ujRqru0fVAQAnqWp4ydjXPmurg0tmtz1j1FD7Pndw0PG3rN2UQ7Nbhz8Zu9zDvumsvv5T416fDfGWtx18RXc/fMcHOgmaCEnOyFm5X33L1NOAU97+u3zJqLq+/W2HF434Rb96u3G/fA984OODa2afvnHUWLNbbx1VBwCcnDpw2uCalQvPHzVWX3/D4Jqb/9a9Ro11mze8b9Dxr//0b48aZ7e7/lNreeMrvnTHx1k5/73n7fggJ0kTAQAAADbRSWaZTT2NXcGaCAAAAMBcJBEAAABgU521lkRIJBEAAACAOUkiAAAAwCbW10SwC1YiiQAAAADMSRIB2DVWr/3YuMJrh5fUaSO2Ydo/7kfm2sFh+ysnSa8O3/8ZANgm+1YGl9S9v2xwzYcfdofBNUlyxnXDt8W+zV+tjRqrzjxzWMGN3qfe6zQRAAAAYAu2eFynTQQAAADMRRIBAAAANtHprLWFFRNJBAAAAGBOkggAAACwBVs8rpNEAAAAAOYiiQAAAACb6CRrkghJJBEAAACAOUkiAAAAwBasibBOEwHYPRa4bU4fPLiQGgDY06rGla2sDK7Zd8dzB9ccuveFg2uS5H3fMfzPpDvd/YbBNae/ZNxrn/P+9MbBNfv+6tOjxhr8+qdno8ZheWgiAAAAwCY6ydoC3/DazayJAAAAAMxFEgEAAAC24ESNdZIIAAAAwFwkEQAAAGATnc6a3RmSSCIAAAAAc5JEAAAAgM10siaIkEQSAQAAAJiTJAIAAOwlVePKTjttcM2+u33JqLE+8c13HVxz8RPeO7jmy898++CaJPnI7102uOac3zhrcM2BD314cE2S9K23Dq6Z3XzLuLEOrw47fm1v7mHQsTvDEZIIAAAAwFwkEQAAAGBTlbWMS/nsNZIIAAAAwFwkEQAAAGATnWRmd4YkkggAAADAnCQRAAAAYAvWRFgniQAAAADMRRIBAAAANtGRRDhCEgEAAACYiyQCAAAMUPvHvYTu1dXhRftWBpesnHvO8HGSfPaBXza45hue/uZRY73rz+84uOacZ9x9cM3n3vDuwTVJcvHBNw2u6bW1wTWrNe493VoZ/nXRq4dHjTV8oL27hcGsJRESSQQAAABgTkudRKiqDya5KclaktXuvqyqzk3ywiQXJflgksd29w1TzREAAIDlZk2Ev7YXkgjf1N1f292Xbdx+WpJXdfclSV61cRsAAAA4SUudRDiBRyf5xo3rVyV5bZKnTjUZAAAAllunsrYn3oM/ecv+LHSS36+qt1TVFRv33aW7P5YkG//e+XiFVXVFVb25qt58OAcXNF0AAABYXsueRHhgd19bVXdO8sqqmnv51e6+MsmVSXK7OnfvLiEKAADASbM7w7qlTiJ097Ub/34yye8kuW+ST1TV+Umy8e8np5shAAAA7B1L20SoqrOq6uwj15N8a5K/SPKyJJdvHHZ5kpdOM0MAAAD2giO7M+z0ZRks8+kMd0nyO1WVrH8e/727/3dVvSnJi6rqSUk+nOQ7JpwjAAB7TK+uLmys2jf8j4pD97n7qLGu+X+Hf15nP+JOo8a6dz4yuGbtuusH18zW1gbXJEl6MWc718rIPxpHfF3Uysq4sWrg+86Hl+MPYcZb2iZCd78/ydcc5/7rk3zL4mcEAADA3lRZ66UN8m8rzwIAAAAwl6VNIgAAAMAidJKZ9+CTSCIAAAAAc5JEAAAAgC0sy+4JO00SAQAAAJiLJAIAAABsotvuDEd4FgAAAIC5SCIAAADAFmbWREiiiQAAALtWr60NrrnhnqePGusrnn394JrZ524eNdbC1Njg9Wxbp3EiPetxhWuHBpfUysqooerAsD8Za9Uf2nudJgIAAABsopOsWQ0giTURAAAAgDlJIgAAAMCm7M5whGcBAAAAmIskAgAAAGyik8y8B59EEgEAAACYkyQCAAAAbGGtbV+ZSCIAAAAAc5JEAACAIWrku5Hdg0tW7nynwTUHPjt8nCTJNR8fXNK3Hhw1VB8+NKpur6mVcV9LKxdcOLhm7P9Vbn/2sOM/eGDcOLtcp7LmPfgkkggAAADAnCQRAAAAYAuz9h58IokAAAAAzEkSAQAAADbRiTURNngWAAAAgLlIIgAAAMAmOpW1Hrkzyx4jiQAAAADMRRMBAAAAmIvTGQAAAGALM+/BJ9FEAADYfjXivNnu7Z8HO2Pk/9XK7W43uOYRr3nX4Jr/9aizBtckydpNNw0v8nV7Uno27vnrz3x2eM2hQ6PGqrOHfj35mtjrNBEAAABgE93JWksiJNZEAAAAAOYkiQAAAACbqsxii8dEEgEAAACYkyQCAAAAbKJjTYQjPAsAAADAXCQRAAAAYAtr3oNPIokAAAAAzEkSAVh+NWKl3BrRQ52tDa8Bdo3aP+5lT6+ujijqUWOxHOrAaaPqbvd7w78GX/7Q+wyuWbv2g4Nrkvi6XSJ9yy3Di1ZWRo1Va7NhBXv0y6hTmbXdGRJJBAAAAGBOkggAAACwBWsirPMsAAAAAHORRAAAAIBNdJJZew8+kUQAAAAA5iSJAAAAAJuqrMXuDIkkAgAAADAnTQQAAADYxJE1EXb6spWqenhVvaeqrq6qpx3n8S+tqtdU1Z9V1duq6tu2+7nQRAAAAIBdrqpWkjw3yd9Jcu8kj6+qex9z2L9K8qLu/rokj0vyS9s9D2siAACnhvLeCcdRw89xfs8vfu2ooe7+kz245vRr3zx8oLFf6702ro7xZuOe89mhEUV9cNRYfe3Hhx1/+PCocZbBLlgT4b5Jru7u9ydJVb0gyaOTvPOoYzrJ7Tau3z7Jtds9CU0EAAAA2B3Oq6qju4dXdveVG9cvSPKRox67Jsn9jql/ZpLfr6p/muSsJA/Z7glqIgAAAMAmumuuNQu2wXXdfdkJHjteFOLYiNPjkzy/u/9dVT0gyX+tqku7e7ZdE5TrAwAAgN3vmiR3O+r2hfni0xWelORFSdLdr09yRpLztnMSkggAAACwhbXFJBE286Ykl1TVxUk+mvWFE7/zmGM+nORbkjy/qr4y602Ev9rOSUz+LAAAAACb6+7VJE9O8ook78r6LgzvqKpnVdWjNg77oSTfU1V/nuQ3k/zD7h6+qusmJBEAAABgE51kNv3uDOnulyd5+TH3Pf2o6+9M8sCdnIMkAgAAADAXSQQAAADYVO2GNRF2BU0EYPmNOc2r17Z/HsCu1ocPTT0FdloNjxpf87QHDK4549i10Od0+v9+/fAiv+M4ntni/o/74MGBBdt6+j27kCYCAAAAbKKTzHr6NRF2A3kMAAAAYC6SCAAAALCFNe/BJ5FEAAAAAOYkiQAAAACb6JQ1ETZIIgAAAABzkUQAAACALcy8B59EEgEAAACYkyQCAAAAbKI7WbMmQhJNBOBUVSN+CXRv/zwA2DafeuL9B9fceu9bBtd8+T946+CaJH6PsJz2rQw7fm1npsHuoYkAAAAAW7A7wzprIgAAAABzkUQAAACATXQqs/YefCKJAAAAAMxJEgEAAAC2sBZrIiSSCAAAAMCcJBEAAABgEx27MxwhiQAAAADMRRIBODV1Tz0DAE6g9o97iXrdAw8Prrn
"text/plain": [
"<matplotlib.figure.Figure at 0x7f8cf01ef978>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sentence = \"The human voice is the most perfect instrument of all.\"\n",
"alignment = tts(model, sentence, CONFIG, use_cuda, ap)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Run-time: 20.04722023010254\n"
]
},
{
"data": {
"text/html": [
"\n",
" <audio controls=\"controls\" >\n",
" <source src=\"data:audio/wav;base64,UklGRhTHAgBXQVZFZm10IBAAAAABAAEAIE4AAECcAAACABAAZGF0YfDGAgACAAoAEAASABEADQAFAP3/9f/v/+7/8f/4/wAACQARABgAHAAdABoAEwAMAAYABAAEAAYACgAOABMAFwAZABgAFAANAAQA+f/t/+L/2f/T/9D/0P/S/9n/4//w////DAAZACIAKAApACcAIQAYAA4ABQAAAPz/+//8//3//P/7//j/8//u/+f/4f/d/93/4f/o//L///8LABkAJgAxADkAPgBAAD8AOQAvACIAFAAFAPb/5//a/9D/yv/I/8n/zf/T/9v/5f/w//r/AgAKABEAFgAaABoAGAASAAsAAwD+//z//f8DAAwAFwAgACUAIgAWAAAA5f/I/67/nf+X/57/sv/Q//X/GwA+AFYAYgBfAFAAOAAdAAIA6//Z/9H/0v/c/+3///8MABQAFgAUAA4ABQD7//P/8v/7/wwAIwA5AEkAUABOAEIAKwAMAO3/0f/A/7z/xP/W/+z/BAAYACIAHQAJAOr/xP+e/4D/b/9v/4H/pv/Z/xQAUwCIAK4AvwC4AJ0AcwBAAAkA1P+l/4L/b/9s/3n/kP+v/9T//v8rAFkAfwCZAKEAlgB6AFAAHQDo/7b/jP9v/2T/bv+O/7z/8P8dAEUAZQB+AJEAmwCYAIYAZwA5AAAAv/95/zX/+P7M/rj+yP4D/2X/4f9eAM8AJAFaAW0BWQEbAbgAQgDM/2f/Hv/0/uv+Af80/3//1f8qAHcAswDbAO0A6QDWALgAlwBzAEwAHgDr/7L/c/8u/+v+tv6g/rj+Bv+G/ywA5wCgATkClgKeAkgCmQGoAJT/d/50/a78Q/xC/Kf8YP1N/k7/SwAyAe0BbAKjApsCXgL+AY8BFwGcACIAr/9I//L+sP6J/nz+k/7T/j3/yf9iAP4AigHyASkCIwLaAVIBnQDP//n+M/6Z/Un9T/2r/VH+Jv8LAOIAigHsAQIC2QGDARQBmgAmAM3/pP+q/8r/3f/L/5X/UP8P/9v+rP6G/nT+i/7X/kz/1/9jAOgAaAHdAUUClQLAArYCawLcARABGQAU/xf+M/19/A389/tJ/Pz8+P0Y/ykAEQG9ASkCXgJhAjQC3wFyAQUBtACOAIsAlgCbAIoAZwA6AAoA3P+j/2T/Kv/9/ur+9f4Y/0z/hf/C/wAAPgB+AMEAAQEnASYB8wCSAB0Arv9P/wH/y/65/tX+Gv9z/7//4//a/6r/aP8q/wr/H/9z/wAAtQB7ATMCsgLSAnsCsQGaAGz/TP5X/az8a/yr/GD9ZP59/3cANwGqAcwBowFOAegAfgAoAPv/BwBYANsAWwGeAZkBZgEmAdgAcwDv/1j/1v6J/nr+l/7P/h//gP/q/1QAvwAqAYYBwQHDAYYBHgGuAE0A9f+Z/zD/zv6R/of+tf4D/1j/ov/c/xMAQgBpAIMAigB4AEgAAACy/2v/N/8W/wb/+f7w/vb+C/8p/zv/Of8u/yr/Pv9p/6r//P9pAPsAlgEDAh0C8QGrAWUBGgG6AEIA2v+0/9//JgBAAA8As/9a/xX/x/5f/vn90v0X/rX+eP8qAMAARQGwAeMBvwFfAQABvgCHADQAvf9F/wr/Lv+L/9r/AAArAJ0AcQFuAjQDfQNDA7cCAwIzATkAFv/f/cD84/ts+3P7+vvW/LP9Vv64/v/+Rf+O/7j/o/9q/0//nv9QACcB5QFxAuUCWgPKAxMEGQTsA6YDQAONAmUBz/8A/j/8vPqZ+fT4//jm+Zf7wP0BACQCGwTeBUQHBAj0BykH3AU/BFICEQCa/TX7O/ni90/3kPem+GH6a/xx/jsAugHSAlwDKANCAhIBIQC3/6n/rP+x/+z/fwBUARgCiAKvAtUCRQPmA2MEiARxBEoE/wNHA+gB7P+Q/TP7Dvku96P1r/Sp9LH1vffI+rX+NgPEB7oLfA6sD2YP5g1AC3kH6wJJ/h761PaL9C3zffJf8gPzZ/RW9qz4fPvG/lQC8QVFCc8LCQ3KDDcLkQhQBfUB3v42/ET6efkA+pH7iv00/y8ArgBDAR4CvQKkAtsB5wBaAF0ArACsABMAT//7/kz/2v9OAJUAxwATAXsBwQFuAW0AMP8b/kX9p/xm/L38rf0R/4gAjwHrAdIBlQEVAQYAhv4Z/VL8b/w+/VP+ZP+IAOoBUAM2BEoEqwO6AsYB7gAwAI3/P/+D/0QA/QAsAcUABgAy/y7+4fxo+z36Ffo7+2n9yP+WAaUCDQMCA3sCfwE0AM3+n/33/Bz9C/6f/5kBdQOmBPIErAQsBHcDgwJLAd//ZP5U/TP93v3H/nP/y//s/xQAmwBhAc0BXwFAABn/XP4S/vj9t/0k/W38Dfxi/HP96f5kAKgBegLeAhwDlAM/BI0EGQT8AroB9wDwAFcBbAG4AKP/vf4+/vf90/35/Xv+Sv8wALQAhAC+/9f+/P3a/Gf7IvrG+Zz6PfwQ/qX/+wA/AjYDXQNhAr8Abv8C/0X/hP+C/5L/OQCGAdwCmwOEA+ICGQJSAZsAEADi//P/7/+p/3P/zv+gACUBngBA/wH+zP2l/sH/dgDMAEwBKgIQA38DSgPBAjwC5AGPAR0BvQCHAD4Ae/80/vT8VPyj/Kj9y/6y/2UAIQHJAf4BlgGQADX/Df65/YL+CQDRAXUDqgRBBSEFOARMAmv/L/xV+TX3tPXh9O/09vXD9/f5Vfyi/rAAVgJ2AyIEdQSBBP4DbQLF/7j8d/qX+d/57fpv/Fn+vADIA0sHOgqdCyoLNwlqBnYDMgHp/2D/j/+hAJACrgQ5BvgGsAZDBcoCwP8B/S377PpB/DP+nf8AABQAXAAzAJj+SvuX90v1f/Xt9y37If7LAOsDqwcNC/cMBQ2ZCzIJMwb4Aq7/mfwI+h34p/aT9aP1n/cj+6r+3wDCAR8CgAKdAmIBOP7l+S/2ZfQt9JH0OPWO9u/41Psp/lH/x/+aABUCdwM2BKQErAXXB5MKjAxyDGkK4gfpBX4E7wIWAVP/Nf5V/of/4AB+AXYBiQESArwC2AIwAjQB9QD6AZsDvgS5BBUEhQNZAzMD+gEm/yj7evc+9W/0kfT29GP1Dvah93z6xP11AIACrgSQB+8KpQ5FErQURRUwFHcSNxDCDAUIygFr+s7yoewI6R7nGebK5X3mGuhE6hPt4O/88WbzEPXe9wj8qAGnB/0LWg27DNQLygqlCNUEKQA4/DD7C/44A0AI9QsYD9wRcBMAE/kPmwolBMT+kfu4+Tr47/aG9oP3TPry/l0EZQlpDb8QaRMKFVoViBNZDxwJjwLu/PT3P/My7k/pPOUL403jvuSj5kvp5u1e9En7LwLlCK0PjhYxHaUibSUBJrYl4SQeIh0cNhMFCKL7Lu+849vZGtIvzq/OotJG2HDe8OQV66LwSvV7+Jv6ufy3AMMGSg3NEr0V/BXFE2QPTgm2AcP65fZN99b7jwI6Co8RjReWG9Eb8Re0EGkISwE++0n2FfJd8OnyzPjY/woF3AjyDNoRFhfJGd0YExXfEEUOTAtoBjb/Ive+7w/pY+PU3e/YftbV1w/cCuHY59Dxe/6sCu0TthqjH6okZSp4L0cxGy47KIohNxoxEeEF+vjL6rDczdBJyVjHL8q9z17Vldlp3d3iPuqN8ZP26vnw/QIEYgsnEhYXPhkTGJoTwAxJBS//BfzM+6H97gBIBskNpxUtG1gcURmMEyUNPAeIAcz7x/Zl9D710fgA/tIDrQnHDjkTehY6GKAYMBj1FmUTLA0aBdj8dvW27jroM+FJ2nbVI9RW1pbaIODn5ljv9fnVBVcR5RrVIvspwy/1MrwygC+BKQkhrxZWCzEAuvXs6xviXNij0OzMjM1c0P3SXNXC2Ozd9eOD6cHubPSl+p8APAUZCXMNdxJeFgIWLhGjCsYFfgR8BTsH0QjmClQPDBWDGf8Z1BagEqQN5QcyAUj7WPg9+Mf6LP6OAX0FFArWD9sUrhe4GCYYHRfZFAgRDwyWBcT+b/eO7+bmFN6z14bUSdQI1q3
" Your browser does not support the audio element.\n",
" </audio>\n",
" "
],
"text/plain": [
"<IPython.lib.display.Audio object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAR4CAYAAABQAE75AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XuctWdZH/rfNZP3kAMhJOGQJhECchBRYe9w2vhBQFCKbqG76IZWpEqNumUXFJVDuwFBi1ortkrdjYKkrS2nWkjZscixnjgFQQ4BSwinEEg4BJKQvIdZ695/zHrt+PK+M8+dzFrPrHm/389nfWbWWtfc65o163nWM9e6nvuu1loAAAAAtrIydgIAAADAclBEAAAAAAZRRAAAAAAGUUQAAAAABlFEAAAAAAZRRAAAAAAGUUQAAAAABlFEAAAAAAZRRAAAAAAGOWnsBHaCvbWv7c+pY6cBJ56q4aEnde6uppPOZDq1+Q7fZfjTOIvvqB+3vl+0Teb8vLPzdWzXSVIrc/w8o/P1270tdQzfenPpjefYel+PncN3/1257Xr/SHN+gOp5je3pO5ZpBw/15bJ/X1d8JtOebAZH3rJ2Yw5Nb5n7X2rRvveRp7Yvf2X+xznv++DBN7XWHjv3B7oNFBGS7M+peXB999hpwAmn9g1/s1s9+6yusduNN/Wm0zd+zz/Lvf8kdf4j3l1gOXn/8NhDh7uGnlx/fV8u7Dq1Z29X/MqpJ3cM3rcttbW1rviufwbS9w9kO3Cwb+zDff88cGy9r8da7XuNTQ8c6Irntut+z+u1utoVXnuHv8bqLnfsGnty5Se74lfvdo+u+Lrp5uHB0+EFh7/44qu78lgWX/7KJO950zfN/XFWz/n42XN/kNtIEQEAAAA20ZJM09O9sXuZEwEAAAAYRCcCAAAAbKpl0nQiJDoRAAAAgIF0IgAAAMAm1udEsCJLohMBAAAAGEgRAQAAABjE6QwAAACwBUs8rtOJAAAAAAyiEwHYNrVnb98PTIdPTjO59rrObDpVX021TSYdwXOuWnfmnpu+PjzWUkZ0aocPdcVPvnZ4eHDva7339ds7fo9pxz6DbdP7emwdL0e2UdXw0H37uoa+5RH37Yr/7GNWu+JP++Tw/cZ5r7mqa+zV292uK/7A+bfvit/3peHHbXXV1cMHnu7OY4eWlkkzsWKiEwEAAAAYSCcCAAAAbMESj+t0IgAAAACD6EQAAACATbQkE50ISXQiAAAAAAPpRAAAAIAtmBNhnU4EAAAAYBCdCAAAALCJlmTSdCIkOhEAAACAgXQiAAAAwBamYyewQ+hEAAAAAAbRiQBsm3b40PwGr+qM76uR1kpfbblWhufTJl1DJ73n23U/AOwgHdtqra72jd369htt0rktOTeWE8Tq6ad3xX/id+/WFf/+h/3e4NivTPuONR7+9nt3xd/rtw90xa9e/cXBse12p3aNXZ37mL3//UNd8dOe47aO47A23Z2f17e0TKzOkEQnAgAAADCQTgQAAADYTEsmGhGS6EQAAAAABtKJAAAAAJtosTrDEToRAAAAgEF0IgAAAMCmKpN0rha2S+lEAAAAAAbRiQAAAACbaEmmVmdIohMBAAAAGEgnAgAAAGzBnAjrdCIAAAAAg+hEAJZD6zwJrU06h++sLPfmAxzbdPi22jpiYcepzveZ6vysr/WtYH/TDz54cOyrf/3Xu8Z+7Mt+oSv+7//YIwfHTm850DX2Pdv7u+KzutoVPt27d3Bs+9JXusZua4e74rtfMz2vScc9adGJcIROBAAAAGAQnQgAAACwhWlv5+outfSdCFW1WlXvr6o3zq5fUFXvrqqPV9Wrq2p4jxEAAABwXEtfREjyjCQf3XD9V5O8tLV2zyTXJ3naKFkBAACwKxyZE2Hel2Ww1EWEqjovyfcl+b3Z9UryqCSvm4VckuQJ42QHAAAAu8uyz4nwm0l+IcntZtfPSvLV1tra7PrVSc491g9W1UVJLkqS/TllzmkCAACwrFoqk+X+DH7bLO2zUFXfn+S61tr7Nt58jNBjrkfSWru4tXZha+3CPdk3lxwBAABgN1nmToSHJfmBqnpckv1JTs96Z8IZVXXSrBvhvCTXjJgjAAAAu4DVGdYtbSdCa+25rbXzWmt3S/KkJG9rrf3DJG9P8sRZ2FOTvGGkFAEAAGBXWeZOhON5dpJXVdUvJXl/kpePnA8AAABL7MjqDOySIkJr7R1J3jH7/qokDxozH+AEUB1vIu2YU7MAvXq2u8S2R7eV/fu74qcHDgwP7nw9rp51Rld87nRWV/jkH31pcOyP3+vRXWOfe/CdXfHTeW6rK6t98atzjJ9M+sauvqbx2tP5r11HPm3a8Tfq/DVZPruiiAAAAADzU5m0pZ0NYFt5FgAAAIBBdCIAAADAJlqSqc/gk+hEAAAAAAbSiQAAAABbsDrDOp0IAAAAwCA6EQAAAGATrVmd4QjPAgAAADCITgQAAADYwtScCEl0IgAAAAAD6UQAAACATbQkE5/BJ1FEAHarldWxM9hg2hfe2nzSgJ2oY1utPX2HLe3wWl8u00lfPDtf9bUetx20/53c/e90xX/uOX3vNXf98esHx64dONA19o7SuV23g33x1fka6xp7pfP1e+hQ3wP0vN7n+HuyfBQRAAAAYFNWZzjCswAAAAAMohMBAAAANtGSTH0Gn0QnAgAAADCQTgQAAADYwqSZYDLRiQAAAAAMpBMBAAAANtFSmfgMPolOBAAAAGAgnQgAAACwhWnzGXyiEwEAAAAYSCcCAAAAbKIl5kSYUUQAdqfpZOwMgCHadHjooUNzTIRtU51LoLU2v7EfeL+++L/6H33xPTpz//hTT+mKP+/fdTyPSdY+95Gu+KXV+5rptWfP8Nhbbukauk06j2Wq8x9cqxVyKykiAAAAwCZaKpOm8pKYEwEAAAAYSBEBAAAAGMTpDAAAALCFqc/gk+hEAAAAAAbSiQAAAACbaC2ZNJ/BJzoRAAAAgIF0IgAAAMCmKtNY4jHRiQAAAAAMpBMBAAAANtFiToQjPAsAAADAIDoRAIDxtDZ2Bmyl5nwOcMf4n/+Zh3YNvf8rfa+vs68/tyv+pm89e3DsZb/9r7vG/v4fv7Arft+b/rIrnmNbOe20rvh2yy3DYyeTvmQ694+rZ53RFV+n3254Kl+5fvi4N6x25bFMJj6DT6ITAQAAABhIJwIAAABsoqUybVZnSHQiAAAAAAPpRAAAAIAtmBNhnWcBAAAAGEQnAgAAAGyiJZk2n8EnOhEAAACAgXQiAAAAwKYqk1idIdGJAAAAAEuhqh5bVX9dVVdW1XOOcf83VdXbq+r9VfXBqnrcduegEwEAAAA2sRPmRKiq1SQvS/KYJFcneW9VXdpau2JD2D9L8prW2u9U1X2TXJbkbtuZh04EAAAA2PkelOTK1tpVrbVDSV6V5PFHxbQkp8++v32Sa7Y7CZ0IwO5UO+ictVriem2bdsa3+eTB7tWxrdZJe+aYSLpf720y6Qhe4m2jN/eV1a7w1TvcfngqnbvTk7/U8TdK8tHnntkVv+eUA4Njn3i37+wae3/9VVd8m/b9rieMztdvO3CwK75O6vh3qvd4oHOfNL3rXbriD5118uDYr9/lnMGxa298U1cey2QHzIlwbpLPbrh+dZIHHxXzwiR/XFX/d5JTkzx6u5NY4iNbAAAA2FXOrqrLN1wu2nDfsaoYR1fKnpzkla2185I8Lsm/r9reT7R0IgAAAMAmWqtFzYnwpdbahce57+ok52+4fl6+8XSFpyV5bJK01t5ZVfuTnJ3kuu1KcGk7Eapqf1W9p6r+qqo+UlW/OLv9lVX1yar6wOxy/7FzBQAAgNvovUnuWVUXVNXeJE9KculRMZ9J8t1JUlXfkmR/ki9uZxLL3IlwMMmjWms3VdWeJH9WVX80u+/nW2uvGzE3AAAAdpHJyKsztNbWqurpSd6UZDXJK1prH6mqFyW5vLV2aZJnJfndqvqZrJ/q8I9a296JeZa2iDB7Im6aXd0zuyzxrEUAAABwfK21y7K+bOPG256/4fsrkjxsnjks7ek
"text/plain": [
"<matplotlib.figure.Figure at 0x7f8cff7df390>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sentence = \"I'm sorry Dave. I'm afraid I can't do that.\"\n",
"alignment = tts(model, sentence, CONFIG, use_cuda, ap)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" > Run-time: 19.729145765304565\n"
]
},
{
"data": {
"text/html": [
"\n",
" <audio controls=\"controls\" >\n",
" <source src=\"data:audio/wav;base64,UklGRoyzAgBXQVZFZm10IBAAAAABAAEAIE4AAECcAAACABAAZGF0YWizAgAAAP///v/+//3//f/8//z//P/8//z//P/8//z//P/8//3//f/+//7//////wAAAAAAAAEAAgADAAQABAAFAAYABwAIAAgACQAKAAoACwALAAwADAAMAA0ADQANAA0ADQANAA0ADQAMAAwADAALAAsACgAKAAkACAAHAAYABgAFAAQAAwACAAEAAAD///7//f/8//v/+v/5//j/9//2//X/9f/0//P/8//y//H/8f/x//H/8P/x//H/8f/x//L/8v/z//T/9P/1//b/9//4//n/+v/7//z//f///wAAAAAAAAEAAgADAAQABAAFAAUABgAGAAcABwAHAAcACAAIAAgACAAJAAkACQAJAAoACgAKAAsACwALAAwADAAMAAwADAANAA0ADQANAAwADAAMAAwACwALAAoACgAJAAkACAAHAAcABgAFAAQAAwADAAIAAQAAAAAA//////7//f/8//v/+v/5//j/9//2//X/9P/z//L/8f/w//D/7//u/+3/7f/s/+v/6//q/+r/6v/q/+n/6f/p/+n/6v/q/+r/6v/r/+v/7P/s/+3/7v/u/+//8P/x//P/9P/1//f/+f/6//z//v8AAAIABAAHAAoADAAPABIAFQAXABoAHAAfACEAIwAlACYAJwApACkAKgAqACsAKwArACoAKgApACkAKAAoACcAJgAmACUAJAAkACMAIgAhACEAHwAeAB0AHAAaABgAFQATABAADQAJAAUAAQD+//n/9P/u/+n/4//e/9j/0//O/8n/xf/A/73/uv+3/7X/s/+z/7L/s/+0/7X/t/+5/7z/vv/B/8T/yP/L/87/0v/V/9j/2//d/+D/4v/j/+X/5//o/+r/6//s/+7/7//x//L/9P/2//n//P///wEABQAJAA4AEwAYAB0AIwApAC8ANgA8AEQASwBSAFkAYABnAG0AdAB6AIAAhQCJAI0AkACSAJMAkwCSAJAAjQCJAIQAfwB3AG8AZgBcAFEARQA5ACwAHwARAAMA9v/n/9n/y/+9/6//ov+V/4n/ff9z/2n/YP9Y/1H/Sv9F/0H/Pv89/z3/Pv9A/0P/SP9N/1P/W/9j/2z/dv+B/4z/mP+j/6//uv/G/9L/3f/o//P//v8HABAAGAAgACgALgA1ADsAQABEAEkATQBQAFMAVgBZAFwAXwBiAGUAaABrAG4AcQB0AHcAewB+AIIAhgCJAI0AkACTAJYAmACaAJsAnACcAJwAmgCYAJUAkQCMAIUAfgB2AG0AYwBYAE0AQAAzACUAFwAIAPn/6v/a/8v/u/+s/57/kP+C/3X/af9e/1T/Sv9C/zv/Nf8x/y7/K/8q/yv/LP8u/zL/Nv87/0L/Sf9Q/1n/Yv9r/3X/f/+J/5T/nv+p/7T/v//K/9T/3//p//P//f8FAA8AFwAgACgAMAA3AD4ARQBLAFEAVgBbAF8AYwBnAGoAbQBwAHMAdQB3AHkAegB8AH4AfwCBAIIAhACFAIcAiACKAIsAjACNAI4AjgCPAI8AjgCNAIwAigCHAIQAgAB8AHYAcABpAGIAWQBQAEYAPAAwACUAGQAMAAAA8//m/9j/y/+9/6//ov+V/4j/fP9w/2X/Wv9Q/0f/Pv83/zD/Kv8l/yH/Hf8b/xr/Gv8b/x3/H/8j/yj/Lv81/z3/Rv9Q/1v/Z/9z/4D/jf+b/6r/uf/I/9f/5v/1/wIAEQAfACwAOQBFAFAAWwBlAG8AdwB/AIYAjQCSAJgAnQChAKUAqQCsAK8AsgC0ALcAuQC7ALwAvgC/AMAAwQDBAMEAwAC/AL0AuwC3ALMArwCpAKMAmwCTAIoAgAB1AGoAXgBRAEQANgAoABsADAD///H/4//V/8f/uv+t/6D/lP+J/37/c/9p/2D/V/9P/0f/P/85/zP/Lf8o/yT/If8e/xv/Gv8Z/xn/Gv8b/x7/If8l/yr/MP83/z7/R/9Q/1r/Zf9w/3z/if+V/6P/sf+//83/2//q//j/BgAUACIAMAA9AEoAVwBkAHAAewCGAJAAmgCkAK0AtQC9AMQAywDRANcA3ADgAOQA5gDoAOkA6gDqAOkA5wDkAOAA3ADXANEAygDCALoAsQCoAJ0AkwCHAHsAbwBiAFUASAA6AC0AHwARAAIA9f/n/9n/y/++/7D/o/+W/4r/fv9y/2f/Xf9U/0v/Q/88/zX/L/8q/yX/Iv8f/x3/G/8a/xr/G/8c/x7/If8k/yj/Lf8y/zj/Pv9F/03/Vv9f/2n/c/9+/4r/lv+i/7D/vf/L/9n/5//1/wMAEQAfAC0AOwBIAFUAYgBvAHsAhgCQAJoAowCsALQAvADDAMkAzgDTANgA2wDdAN8A4ADhAOAA4ADeANsA2QDVANAAygDEAL4AtgCvAKcAngCVAIsAgQB3AGwAYQBWAEoAPwA0ACgAHAARAAQA+v/u/+H/1v/K/7//s/+o/53/k/+I/37/c/9q/2H/Wf9R/0r/Q/89/zf/Mv8u/yr/J/8l/yP/I/8j/yP/JP8m/yn/Lf8x/zb/PP9C/0n/Uf9Z/2L/bP92/4L/jf+Y/6X/sf++/8v/2P/m//P/AAANABoAJwA0AEEATQBYAGMAbgB4AIMAjACTAJsAogCpAK8AtAC5AL0AwADDAMYAxwDJAMgAxwDGAMQAwwDBAL0AugC0ALAAqQCkAJ8AmACSAIoAggB7AHIAagBiAFkAUABHAD0ANAArACEAFwANAAMA+//x/+j/3f/T/8r/wP+5/7D/qP+f/5b/j/+H/4H/ev90/27/af9k/2D/XP9Z/1b/U/9R/0//T/9Q/0//Tv9O/0//Uf9U/1f/Wv9d/2D/ZP9q/3D/dv98/4D/iP+R/5v/pv+u/7f/v//I/9P/3v/r//f/AwAOABoAKAA1AEEATABWAGIAbgB6AIUAjwCXAJ4ApACrALMAuQC/AMAAwQDDAMMAxQDGAMUAxAC/ALsAuQCyAKsAoACXAJIAigCCAHoAbgBkAFkATQBDADgAMAAmABoAEgAIAAIA/P/x/+n/3//X/9H/y//H/8H/u/+z/6//rP+r/6X/nf+Z/5X/lv+T/47/i/+I/4n/iv+I/4b/g/+B/4D/ff9//3//gv+C/4H/gv+B/4H/gf+D/4X/iv+O/5D/lf+Y/53/nv+i/6n/sv+9/8P/yf/O/9T/2f/f/+r/8v/+/wMADAAYACAALgA4AEEASgBUAGEAcQCAAIgAkACWAJ8AqQCwALgAuAC3AL4AvgC/ALoAtQC0AKsAoQCXAJAAiAB7AGwAXwBYAEsAPgAuACMAIQAWAAkA/v/3//j/+P/0/+3/6//p/+r/6P/n//T/8f/0//b/8v/8/+z/6P/l/9z/5f/X/9n/2v/P/8b/r/+i/5n/l/+U/4//h/98/3v/cP9x/2j/WP9Z/1f/ZP9u/2r/a/9s/3L/e/98/4D/hv+Z/6b/pv+u/63/yP/Y/9n/4f/Z/+j/9f/8/woAEAAdACoAKQAxAD4ASQBTAFQAVwBnAHsAgACAAIMAiwCTAIwAjQCJAIsAnQCUAJIAmQCYAJwAkACEAJAAlACOAIoAgACFAHsAYwBbAFQATgBNADsAPAA6ABMAAwDk/+L/8//Y/9f/zP/F/9X/wf+5/7T/n/+m/67/wP/V/9L/yv/K/8r/yP/Q/83/wv+5/8H/1f/Z/9X/t/+p/6//pP+e/5H/i/+N/5H/i/+E/3T/aP9g/03/Z/+F/5X/oP+W/5v/pf+e/8T/4//Z/9L/pv+2//b/FwAyAB4A/v/w/+f/7/8EACEAPAA7ADEALQA5AF4AXQBQAE4AUAB8AIYAogDBAKcApwCPAIwAvwDPAOoA8QC3AKwAngCSAKsApwC2AKcAfwBoAFEAgABzAFIASAAjADoAMwA3ACoACAD5/9X/tP+d/5X/kf/C/7X/kP96/1L/fP+S/43/mP+N/7D/wP+q/6X/lf+V/4H/Zf+C/5f/g/9c/0v/X/94/2T/Mv8f/xX
" Your browser does not support the audio element.\n",
" </audio>\n",
" "
],
"text/plain": [
"<IPython.lib.display.Audio object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBEAAAR4CAYAAABQAE75AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3Xm4pGldH/zv75zunhWYDRgyw6oMSyARMwGMudCwCCoCl0EDbkRREgOJClFAE0DUoFlcYtBkXkUmJgpIjBBefCGAxJ1FMSr7AAIzDMswzDAL09On6n7/ONVwaKernrv7VD2nTn8+11VXn6r61fP8TnVt567vc9/VWgsAAADAIhtjNwAAAACsB4MIAAAAwCAGEQAAAIBBDCIAAAAAgxhEAAAAAAYxiAAAAAAMYhABAAAAGMQgAgAAADCIQQQAAABgkANjN7AXHKrT2uk5a+w2gL2qOuvbUrqgR+//WS//x7BUtdH3PdfhO5/RVX/atUe66jPte9K3I53bh2PUgc2u+q07nN63g873sQM3DX9Mf+7I9bl18rllvxOv3KP/wVnt09dOlr6fP/nzw69rrT1m6Ts6CQYRkpyes/KQesTYbQB7VB3oe6lsk843mBIK2221sdzPLq3zD4pMl/+hgzmq8/HQjBKNbePs23XVf/i7H9hVf89f+1hXfQ7f2lW+dVXn9tl9vc/7PWbz3PO66j/1DZd01R843Pc6d94ff3xw7R9e+atd214Xn752kre+7m5L38/mXd5/wdJ3cpIMIgAAAMAcLck007Hb2BN8/QUAAAAMIokAAAAAc7VMmiRCIokAAAAADCSJAAAAAHNsz4lg4t1EEgEAAAAYyCACAAAAMIjDGQAAAGABSzxuM4gAsEDb2uq7QVXnDrwhLdT6jkF0l/JFOh8/jG96ww1d9Xf9iT/qqt+qzjCuF5X1s8ee9xunn95Vf9W33qer/uaL+n7fS376Q1317fCtw4u3Jl3bZv0YRAAAAIA5Wlome2xwaizmRAAAAAAGkUQAAACABSzxuE0SAQAAABhEEgEAAADmaEkmkghJJBEAAACAgSQRAAAAYAFzImyTRAAAAAAGkUQAAACAOVqSSZNESAwiAOw+bzAAX6QO9H3k7K2f3nJLV33apK+etdP7GGpffr+u+ke/5A+66h9+1lu66r/3R76sq/6i//a+rvrJjTd11Wc6/LNNm077ts3aMYgAAAAACxge2WZOBAAAAGAQSQQAAACYo6VlYnWGJJIIAAAAwECSCAAAADBPSyaCCEkkEQAAAICBJBEAAABgjharMxwliQAAAAAMIokAAAAAc1UmqbGb2BMkEQAAAIBBJBEAdtvG5nK3307BI/Ka6ZBhnbWtraXWs142zz+vq/7O/++R7n387MWv76p/ygfO76p/49f/za7613303K76c897f1f99LM3dtVvnHF63/Y/d0tX/X7Ukkx9HEkiiQAAAAAMJIkAAAAAC5gTYZskAgAAADCIJAIAAADM0SKJcJQkAgAAADCIJAIAAAAsMG2SCIkkAgAAADCQJAIAAADMYU6EL5BEAAAAAAaRRAAAAIA5WioT38EnMYgAsPumk7E7APa6jc2+eq8rrNDGmWd21d/yqjt21b/8vr/WVf8Pv++ZXfVJ8s2/eUPnLT7RvY9lmlzz6aVuf9qmXfVta6ujuHV2w7oxiAAAAAALWJ1hmzwGAAAAMIgkAgAAAMxhdYYvkEQAAAAABpFEAAAAgLkqk+Y7+EQSAQAAABhIEgEAAADmaEmmvoNPIokAAAAADCSJAAAAAAtYnWGbQQQAgFWbTsbugDW2cdZZXfVXf9ff7qp//Q/9u676x//Qs7rqv/3Xv7Kr/sy8pauexdrW1tgtsMYMIgAAAMAcrVmd4Sj3AgAAADCIJAIAAAAsMDUnQhJJBAAAAGAgSQQAAACYoyWZ+A4+iSQCAAAAMJAkAgAAAMxldYaj3AsAAADAIJIIAAAAMEdLMvUdfBJJBAAAAGAgSQSAsVXnmsOtLacPAEaxefvbd9Vf/5j7d9V/9tJbuuqfcu9HdNWfkz/rqp92VTNI52eJ2tzsqz8w/M/GuqXzc80ambT9+7v1kEQAAAAABpFEAAAAgDlaKhPfwSeRRAAAAAAGkkQAAACABabNd/CJJAIAAAAwkCQCAAAAzNEScyLMuBcAAACAQSQRAAAAYI6WyqTV2G3sCZIIAAAAwCCSCAC7rZY8St27/daW0wcAu+KWh17SVX/2P7myq/5+3zHtqt+65ZauesZXm5t99Wec0VW/cfZZw4s/1dcL68cgAgAAACwwFeRP4nAGAAAAYCBJBAAAAJijtWTSfAefSCIAAAAAA0kiAAAAwFyVaSzxmEgiAAAAAANJIgAAAMAcLeZEOMq9AAAAAAwiiQAAAAALTHwHn0QSAQAAABhIEgFgbNU5ntumy+kDYF1tbHaV12Zffa+Ne9+jq/7WH/xU3w4edXVX+dZ00rd9xld9qwC0ra2+7d/n7l3lR04b/mdj++zBvl7WREtl2qzOkEgiAAAAAANJIgAAAMAC5kTYtvb3QlVtVtU7quo1s/P3rKq3VNX7q+rlVXVo7B4BAABgP1j7QYQk35fk3TvO/1SSn2mt3TvJZ5I8dZSuAAAA2BdakmnbWPppHaxHl8dRVRcn+fokvzQ7X0kenuSVs5LLkzxhnO4AAABgf1n3ORF+NskPJbnd7Pz5Sa5rrR2dnvTKJBfd1g2r6mlJnpYkp+fMJbcJAADA+qpMYnWGZI2TCFX12CSfbK39yc6Lb6O03dbtW2uXtdYuba1dejCnLaVHAAAA2E/WOYnwlUkeV1Vfl+T0JLfPdjLhnKo6MEsjXJzkYyP2CAAAwJo7OifC2KrqMUl+Lslmkl9qrf3kMdffLduH9Z8zq3lOa+21u9nD+PfCCWqtPbe1dnFr7R5JnpTkTa21b03yO0meOCt7SpJXjdQiAAAA7Iqq2kzy4iRfm+T+SZ5cVfc/puxfJXlFa+1B2f47+Rd2u4+1HUSY49lJnllVV2R7joRfHrkfAAAA1txkNi/CMk8LPDjJFa21D7bWbk3ysiSPP6amZTulnyR3yBKS+et8OMPntdbenOTNs58/mO07F2Ac7TanYplTP1lOHwDrqvomL9s4dHBJjWybftklXfXn/fRHuuqvfdxmV/1k6n1j3+v9LNG7+T99d1f9xkbHc3Lrc53d0OGiJB/dcf7KJA85puYFSV5fVf88yVlJHrnbTeyLQQQAAABYltZqVXMiXFBVb99x/rLW2mWzn4csJPDkJC9trf2HqvqKJL9aVQ9orU13q0GDCAAAALA3XNNau/Q4112Z5K47zt/WQgJPTfKYJGmt/VFVnZ7kgiSf3K0GDSIAAADAApPxV2d4W5J7V9U9k1yV7YkTv+WYmo8keUSSl1bV/bK9kuGndrOJ0e8FAAAAYL7W2laSZyR5XZJ3Z3sVhndW1Qur6nGzsmcl+Z6q+r9Jfj3JP25tdyfZkEQAAACAOVqS6eLVE5bfR2uvTfLaYy573o6f35XkK5fZgyQCAAAAMIgkAgAAAMxVe2FOhD3BvQAAAAAMIokAAAAAc7Qk0zb+nAh7gUEEAACWq/o+eG9+yT266qfnnNVVf/NFZ3bVX/nIvv43nnZhV/30mvd01XMK2Njsq59O+urbtK9+89Dw2i1/aO93BhEAAABggYnZAJKYEwEAAAAYSBIBAAAA5mgpcyLMSCIAAAAAg0giAAAAwAJT38EnkUQAAAAABpJEAAAAgDlaSybmREgiiQAAAAAMJIkAAAAAC1idYZskAgAAADCIJALAbqtTcJS6tbE7AE5G7+tW9X0Pde1THtxVf8fv+HBX/ad+/cKu+sPn9f2+9/35T3TVT973ga56xlcHD3XWL/fPqDp0sKu+3XK4b/tnn9VVnzudP3zbH+i7L9dFS2XafAefSCIAAAAAA0kiAAAAwAKTnIJp09sgiQAAAAAMIokAAAAAc7RYneEoSQQAAABgEEkEAAAAmMvqDEe5FwAAAIBBJBEAAABgganVGZJIIgAAAAADSSIAAADAHK0lE6s
"text/plain": [
"<matplotlib.figure.Figure at 0x7f8c2453bf60>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sentence = \"This cake is great. It's so delicious and moist.\"\n",
2018-02-13 16:33:14 +00:00
"alignment = tts(model, sentence, CONFIG, use_cuda, ap)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}