TTS/tests/inputs/test_config.json

70 lines
3.4 KiB
JSON
Raw Normal View History

2018-04-26 15:44:13 +00:00
{
2018-11-02 15:13:51 +00:00
"audio":{
"audio_processor": "audio", // to use dictate different audio processors, if available.
2020-07-08 08:21:45 +00:00
"num_mels": 80, // size of the mel spec frame.
2020-07-12 08:40:33 +00:00
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
2018-11-02 15:13:51 +00:00
"sample_rate": 22050, // wav sample-rate. If different than the original data, it is resampled.
"frame_length_ms": null, // stft window length in ms.
"frame_shift_ms": null, // stft window hop-lengh in ms.
"hop_length": 256,
"win_length": 1024,
2018-11-02 15:13:51 +00:00
"preemphasis": 0.97, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"min_level_db": -100, // normalization range
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
"power": 1.5, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 30,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
"signal_norm": true, // normalize the spec values in range [0, 1]
"symmetric_norm": true, // move normalization to range [-1, 1]
"clip_norm": true, // clip normalized values into the range.
"max_norm": 4, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"mel_fmin": 0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000, // maximum freq level for mel-spec. Tune for dataset!!
2020-07-08 08:21:45 +00:00
"do_trim_silence": false,
"spec_gain": 20
2018-11-02 15:13:51 +00:00
},
2020-03-05 20:44:47 +00:00
"characters":{
"pad": "_",
"eos": "~",
"bos": "^",
"characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
"punctuations":"!'(),-.:;? ",
"phonemes":"iyɨʉɯuɪʏʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑɒᵻʘɓǀɗǃʄǂɠǁʛpbtdʈɖcɟkɡʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟˈˌːˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
},
2018-04-26 15:44:13 +00:00
"hidden_size": 128,
"embedding_size": 256,
"text_cleaner": "english_cleaners",
2018-04-26 15:44:13 +00:00
"epochs": 2000,
"lr": 0.003,
"lr_patience": 5,
"lr_decay": 0.5,
"batch_size": 2,
"r": 5,
"mk": 1.0,
"num_loader_workers": 4,
2019-02-25 17:34:06 +00:00
"memory_size": 5,
2018-04-26 15:44:13 +00:00
"save_step": 200,
2019-07-19 10:06:46 +00:00
"data_path": "tests/data/ljspeech/",
2018-04-26 15:44:13 +00:00
"output_path": "result",
2018-07-30 11:52:16 +00:00
"min_seq_len": 0,
2018-12-17 15:36:19 +00:00
"max_seq_len": 300,
2020-07-12 08:40:33 +00:00
"log_dir": "tests/outputs/",
// MULTI-SPEAKER and GST
"use_speaker_embedding": false, // use speaker embedding to enable multi-speaker learning.
"use_gst": true, // use global style tokens
"gst": { // gst parameter if gst is enabled
2020-08-05 16:33:22 +00:00
"gst_style_input": null, // Condition the style input either on a
// -> wave file [path to wave] or
// -> dictionary using the style tokens {'token1': 'value', 'token2': 'value'} example {"0": 0.15, "1": 0.15, "5": -0.15}
// with the dictionary being len(dict) <= len(gst_style_tokens).
2020-09-29 20:03:25 +00:00
"gst_use_speaker_embedding": true, // if true pass speaker embedding in attention input GST.
2020-08-05 16:33:22 +00:00
"gst_embedding_dim": 512,
"gst_num_heads": 4,
"gst_style_tokens": 10
2020-08-05 16:33:22 +00:00
}
}