2019-07-11 13:26:40 +00:00
{
"run_name" : "libritts-360" ,
"run_description" : "LibriTTS 360 clean with multi speaker embedding." ,
"audio" : {
// Audio processing parameters
"num_mels" : 80 , // size of the mel spec frame.
"num_freq" : 1025 , // number of stft frequency levels. Size of the linear spectogram frame.
2019-07-15 13:38:16 +00:00
"sample_rate" : 16000 , // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
2019-07-11 13:26:40 +00:00
"frame_length_ms" : 50 , // stft window length in ms.
"frame_shift_ms" : 12.5 , // stft window hop-lengh in ms.
"preemphasis" : 0.98 , // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"min_level_db" : -100 , // normalization range
"ref_level_db" : 20 , // reference level db, theoretically 20db is the sound of air.
"power" : 1.5 , // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters" : 60 , // #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
// Normalization parameters
"signal_norm" : true , // normalize the spec values in range [0, 1]
"symmetric_norm" : false , // move normalization to range [-1, 1]
"max_norm" : 1 , // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm" : true , // clip normalized values into the range.
"mel_fmin" : 0.0 , // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax" : 8000.0 , // maximum freq level for mel-spec. Tune for dataset!!
"do_trim_silence" : true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
} ,
"distributed" : {
"backend" : "nccl" ,
"url" : "tcp:\/\/localhost:54321"
} ,
"reinit_layers" : [ ] ,
2019-07-15 13:38:16 +00:00
"model" : "Tacotron2" , // one of the model in models/
2019-07-11 13:26:40 +00:00
"grad_clip" : 1 , // upper limit for gradients for clipping.
"epochs" : 1000 , // total number of epochs to train.
"lr" : 0.0001 , // Initial learning rate. If Noam decay is active, maximum learning rate.
"lr_decay" : false , // if true, Noam learning rate decaying is applied through training.
"warmup_steps" : 4000 , // Noam decay steps to increase the learning rate from 0 to "lr"
"memory_size" : 5 , // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
"attention_norm" : "sigmoid" , // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
"prenet_type" : "original" , // ONLY TACOTRON2 - "original" or "bn".
"prenet_dropout" : true , // ONLY TACOTRON2 - enable/disable dropout at prenet.
2019-07-16 13:17:38 +00:00
"windowing" : false , // Enables attention windowing. Used only in eval mode.
"use_forward_attn" : false , // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster.
2019-07-11 13:26:40 +00:00
"forward_attn_mask" : false ,
"transition_agent" : false , // ONLY TACOTRON2 - enable/disable transition agent of forward attention.
2019-07-16 13:17:38 +00:00
"location_attn" : true , // ONLY TACOTRON2 - enable_disable location sensitive attention. It is enabled for TACOTRON by default.
2019-07-11 13:26:40 +00:00
"loss_masking" : true , // enable / disable loss masking against the sequence padding.
"enable_eos_bos_chars" : false , // enable/disable beginning of sentence and end of sentence chars.
"stopnet" : true , // Train stopnet predicting the end of synthesis.
"separate_stopnet" : true , // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
2019-07-16 13:17:38 +00:00
"tb_model_param_stats" : true , // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
2019-07-11 13:26:40 +00:00
2019-07-16 13:17:38 +00:00
"batch_size" : 24 , // Batch size for training. Lower values than 32 might cause hard to learn attention.
2019-07-11 13:26:40 +00:00
"eval_batch_size" : 16 ,
2019-07-15 13:38:16 +00:00
"r" : 1 , // Number of frames to predict for step.
2019-07-11 13:26:40 +00:00
"wd" : 0.000001 , // Weight decay weight.
"checkpoint" : true , // If true, it saves checkpoints per "save_step"
"save_step" : 1000 , // Number of training steps expected to save traning stats and checkpoints.
"print_step" : 10 , // Number of steps to log traning on console.
"batch_group_size" : 0 , //Number of batches to shuffle after bucketing.
2019-07-16 13:17:38 +00:00
"run_eval" : true ,
2019-07-11 13:26:40 +00:00
"test_delay_epochs" : 5 , //Until attention is aligned, testing only wastes computation time.
"test_sentences_file" : null , // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
"data_path" : "/home/erogol/Data/Libri-TTS/train-clean-360/" , // DATASET-RELATED: can overwritten from command argument
"meta_file_train" : null , // DATASET-RELATED: metafile for training dataloader.
"meta_file_val" : null , // DATASET-RELATED: metafile for evaluation dataloader.
"dataset" : "libri_tts" , // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
"min_seq_len" : 6 , // DATASET-RELATED: minimum text length to use in training
"max_seq_len" : 150 , // DATASET-RELATED: maximum text length
"output_path" : "/media/erogol/data_ssd/Models/libri_tts/" , // DATASET-RELATED: output path for all training outputs.
2019-07-15 13:38:16 +00:00
"num_loader_workers" : 12 , // number of training data loader processes. Don't set it too big. 4-8 are good values.
2019-07-11 13:26:40 +00:00
"num_val_loader_workers" : 4 , // number of evaluation data loader processes.
"phoneme_cache_path" : "mozilla_us_phonemes" , // phoneme computation is slow, therefore, it caches results in the given folder.
"use_phonemes" : true , // use phonemes instead of raw characters. It is suggested for better pronounciation.
"phoneme_language" : "en-us" , // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
"text_cleaner" : "phoneme_cleaners" ,
"use_speaker_embedding" : true
}