TTS/models/tacotron.py

51 lines
1.7 KiB
Python
Raw Normal View History

2018-01-22 14:59:41 +00:00
# coding: utf-8
import torch
from torch.autograd import Variable
from torch import nn
from utils.text.symbols import symbols
from TTS.layers.tacotron import Prenet, Encoder, Decoder, CBHG
2018-01-22 14:59:41 +00:00
class Tacotron(nn.Module):
def __init__(self, embedding_dim=256, linear_dim=1025, mel_dim=80,
freq_dim=1025, r=5, padding_idx=None,
use_memory_mask=False):
super(Tacotron, self).__init__()
self.mel_dim = mel_dim
self.linear_dim = linear_dim
self.use_memory_mask = use_memory_mask
self.embedding = nn.Embedding(len(symbols), embedding_dim,
padding_idx=padding_idx)
# Trying smaller std
self.embedding.weight.data.normal_(0, 0.3)
self.encoder = Encoder(embedding_dim)
self.decoder = Decoder(mel_dim, r)
self.postnet = CBHG(mel_dim, K=8, projections=[256, mel_dim])
self.last_linear = nn.Linear(mel_dim * 2, freq_dim)
def forward(self, characters, mel_specs=None, input_lengths=None):
B = characters.size(0)
inputs = self.embedding(characters)
# (B, T', in_dim)
encoder_outputs = self.encoder(inputs, input_lengths)
if self.use_memory_mask:
memory_lengths = input_lengths
else:
memory_lengths = None
# (B, T', mel_dim*r)
mel_outputs, alignments = self.decoder(
encoder_outputs, mel_specs, memory_lengths=memory_lengths)
# Post net processing below
# Reshape
# (B, T, mel_dim)
mel_outputs = mel_outputs.view(B, -1, self.mel_dim)
linear_outputs = self.postnet(mel_outputs)
linear_outputs = self.last_linear(linear_outputs)
return mel_outputs, linear_outputs, alignments