mirror of https://github.com/coqui-ai/TTS.git
57 lines
2.1 KiB
Python
57 lines
2.1 KiB
Python
|
import copy
|
||
|
import os
|
||
|
import unittest
|
||
|
|
||
|
import torch
|
||
|
from tests import get_tests_input_path
|
||
|
from torch import nn, optim
|
||
|
|
||
|
from TTS.vocoder.models.wavegrad import Wavegrad
|
||
|
from TTS.utils.io import load_config
|
||
|
from TTS.utils.audio import AudioProcessor
|
||
|
|
||
|
#pylint: disable=unused-variable
|
||
|
|
||
|
torch.manual_seed(1)
|
||
|
use_cuda = torch.cuda.is_available()
|
||
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||
|
|
||
|
|
||
|
class WavegradTrainTest(unittest.TestCase):
|
||
|
def test_train_step(self): # pylint: disable=no-self-use
|
||
|
"""Test if all layers are updated in a basic training cycle"""
|
||
|
input_dummy = torch.rand(8, 1, 20 * 300).to(device)
|
||
|
mel_spec = torch.rand(8, 80, 20).to(device)
|
||
|
|
||
|
criterion = torch.nn.L1Loss().to(device)
|
||
|
model = Wavegrad(in_channels=80,
|
||
|
out_channels=1,
|
||
|
upsample_factors=[5, 5, 3, 2, 2],
|
||
|
upsample_dilations=[[1, 2, 1, 2], [1, 2, 1, 2],
|
||
|
[1, 2, 4, 8], [1, 2, 4, 8],
|
||
|
[1, 2, 4, 8]])
|
||
|
model.train()
|
||
|
model.to(device)
|
||
|
model_ref = copy.deepcopy(model)
|
||
|
count = 0
|
||
|
for param, param_ref in zip(model.parameters(),
|
||
|
model_ref.parameters()):
|
||
|
assert (param - param_ref).sum() == 0, param
|
||
|
count += 1
|
||
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||
|
for i in range(5):
|
||
|
y_hat = model.forward(input_dummy, mel_spec, torch.rand(8).to(device))
|
||
|
optimizer.zero_grad()
|
||
|
loss = criterion(y_hat, input_dummy)
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
# check parameter changes
|
||
|
count = 0
|
||
|
for param, param_ref in zip(model.parameters(),
|
||
|
model_ref.parameters()):
|
||
|
# ignore pre-higway layer since it works conditional
|
||
|
# if count not in [145, 59]:
|
||
|
assert (param != param_ref).any(
|
||
|
), "param {} with shape {} not updated!! \n{}\n{}".format(
|
||
|
count, param.shape, param, param_ref)
|
||
|
count += 1
|