2018-06-20 15:10:27 +00:00
{
2019-01-01 19:08:34 +00:00
"model_name" : "TTS-phoneme" ,
2019-01-08 16:08:27 +00:00
"model_description" : "Training with phonemes created by phonemizer." ,
2018-07-05 15:29:04 +00:00
2018-11-02 15:13:51 +00:00
"audio" : {
"audio_processor" : "audio" , // to use dictate different audio processors, if available.
2018-11-02 16:27:31 +00:00
// Audio processing parameters
2018-11-02 15:13:51 +00:00
"num_mels" : 80 , // size of the mel spec frame.
"num_freq" : 1025 , // number of stft frequency levels. Size of the linear spectogram frame.
2019-01-07 14:15:21 +00:00
"sample_rate" : 16000 , // wav sample-rate. If different than the original data, it is resampled.
2018-11-02 15:13:51 +00:00
"frame_length_ms" : 50 , // stft window length in ms.
"frame_shift_ms" : 12.5 , // stft window hop-lengh in ms.
"preemphasis" : 0.97 , // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"min_level_db" : -100 , // normalization range
"ref_level_db" : 20 , // reference level db, theoretically 20db is the sound of air.
"power" : 1.5 , // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters" : 60 , // #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
2018-11-02 16:27:31 +00:00
// Normalization parameters
2018-11-02 15:13:51 +00:00
"signal_norm" : true , // normalize the spec values in range [0, 1]
"symmetric_norm" : false , // move normalization to range [-1, 1]
"max_norm" : 1 , // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm" : true , // clip normalized values into the range.
"mel_fmin" : null , // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
2018-11-23 15:58:26 +00:00
"mel_fmax" : null , // maximum freq level for mel-spec. Tune for dataset!!
2018-12-28 11:49:55 +00:00
"do_trim_silence" : true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
2018-11-02 15:13:51 +00:00
} ,
2018-09-06 12:33:21 +00:00
2019-01-08 16:08:27 +00:00
"embedding_size" : 256 , // Character embedding vector length. You don't need to change it in general.
2019-01-08 16:08:27 +00:00
"text_cleaner" : "phoneme_cleaners" ,
2019-01-08 16:08:27 +00:00
"epochs" : 1000 , // total number of epochs to train.
"lr" : 0.001 , // Initial learning rate. If Noam decay is active, maximum learning rate.
"lr_decay" : false , // if true, Noam learning rate decaying is applied through training.
"warmup_steps" : 4000 , // Noam decay steps to increase the learning rate from 0 to "lr"
2018-11-03 18:47:28 +00:00
2019-01-07 14:23:51 +00:00
"batch_size" : 32 , // Batch size for training. Lower values than 32 might cause hard to learn attention.
"eval_batch_size" : 32 ,
"r" : 5 , // Number of frames to predict for step.
"wd" : 0.000001 , // Weight decay weight.
"checkpoint" : true , // If true, it saves checkpoints per "save_step"
"save_step" : 5000 , // Number of training steps expected to save traning stats and checkpoints.
"print_step" : 10 , // Number of steps to log traning on console.
2018-12-13 17:18:37 +00:00
"tb_model_param_stats" : true , // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
2018-11-02 15:13:51 +00:00
"run_eval" : true ,
2019-01-07 14:23:51 +00:00
"data_path" : "../../Data/LJSpeech-1.1/" , // DATASET-RELATED: can overwritten from command argument
"meta_file_train" : "transcript_train.txt" , // DATASET-RELATED: metafile for training dataloader.
"meta_file_val" : "transcript_val.txt" , // DATASET-RELATED: metafile for evaluation dataloader.
"dataset" : "tweb" , // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
"min_seq_len" : 0 , // DATASET-RELATED: minimum text length to use in training
"max_seq_len" : 300 , // DATASET-RELATED: maximum text length
"output_path" : "/media/erogol/data_ssd/Data/models/tweb_models/" , // DATASET-RELATED: output path for all training outputs.
2018-12-17 15:37:39 +00:00
"num_loader_workers" : 8 , // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers" : 4 // number of evaluation data loader processes.
2018-12-31 12:20:15 +00:00
}