"run_description":"train speaker encoder for libritts 360",
"audio":{
// Audio processing parameters
"num_mels":40,// size of the mel spec frame.
"num_freq":1025,// number of stft frequency levels. Size of the linear spectogram frame.
"sample_rate":16000,// DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
"frame_length_ms":50,// stft window length in ms.
"frame_shift_ms":12.5,// stft window hop-lengh in ms.
"preemphasis":0.98,// pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"min_level_db":-100,// normalization range
"ref_level_db":20,// reference level db, theoretically 20db is the sound of air.
// Normalization parameters
"signal_norm":true,// normalize the spec values in range [0, 1]
"symmetric_norm":true,// move normalization to range [-1, 1]
"max_norm":4,// scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm":true,// clip normalized values into the range.
"mel_fmin":0.0,// minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax":8000.0,// maximum freq level for mel-spec. Tune for dataset!!
"do_trim_silence":false// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
},
"reinit_layers":[],
"grad_clip":3.0,// upper limit for gradients for clipping.
"epochs":1000,// total number of epochs to train.
"lr":0.0001,// Initial learning rate. If Noam decay is active, maximum learning rate.
"lr_decay":false,// if true, Noam learning rate decaying is applied through training.
"warmup_steps":4000,// Noam decay steps to increase the learning rate from 0 to "lr"
"tb_model_param_stats":false,// true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"steps_plot_stats":10,// number of steps to plot embeddings.
"num_speakers_in_batch":32,// Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"wd":0.000001,// Weight decay weight.
"checkpoint":true,// If true, it saves checkpoints per "save_step"
"save_step":1000,// Number of training steps expected to save traning stats and checkpoints.
"print_step":1,// Number of steps to log traning on console.
"output_path":"/media/erogol/data_ssd/Models/libri_tts/speaker_encoder/",// DATASET-RELATED: output path for all training outputs.