2018-06-20 15:10:27 +00:00
{
2020-05-12 11:46:16 +00:00
"model" : "Tacotron2" ,
2020-03-10 21:38:51 +00:00
"run_name" : "ljspeech" ,
2020-04-23 12:37:12 +00:00
"run_description" : "tacotron2" ,
2018-07-05 15:29:04 +00:00
2019-11-05 16:06:33 +00:00
// AUDIO PARAMETERS
2018-11-02 15:13:51 +00:00
"audio" : {
2020-03-17 11:44:18 +00:00
// stft parameters
"num_freq" : 513 , // number of stft frequency levels. Size of the linear spectogram frame.
"win_length" : 1024 , // stft window length in ms.
"hop_length" : 256 , // stft window hop-lengh in ms.
"frame_length_ms" : null , // stft window length in ms.If null, 'win_length' is used.
"frame_shift_ms" : null , // stft window hop-lengh in ms. If null, 'hop_length' is used.
2020-05-12 11:46:16 +00:00
2018-11-02 16:27:31 +00:00
// Audio processing parameters
2019-05-14 15:50:34 +00:00
"sample_rate" : 22050 , // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
2020-03-17 11:44:18 +00:00
"preemphasis" : 0.0 , // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
2019-02-12 09:03:55 +00:00
"ref_level_db" : 20 , // reference level db, theoretically 20db is the sound of air.
2020-05-12 11:46:16 +00:00
2020-03-17 11:44:18 +00:00
// Silence trimming
"do_trim_silence" : true , // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"trim_db" : 60 , // threshold for timming silence. Set this according to your dataset.
// Griffin-Lim
2018-11-02 15:13:51 +00:00
"power" : 1.5 , // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters" : 60 , // #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
2020-03-17 11:44:18 +00:00
// MelSpectrogram parameters
2020-05-12 11:46:16 +00:00
"num_mels" : 80 , // size of the mel spec frame.
2020-03-17 11:44:18 +00:00
"mel_fmin" : 0.0 , // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax" : 8000.0 , // maximum freq level for mel-spec. Tune for dataset!!
2018-11-02 16:27:31 +00:00
// Normalization parameters
2020-03-17 11:44:18 +00:00
"signal_norm" : true , // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
"min_level_db" : -100 , // lower bound for normalization
2019-07-22 13:09:05 +00:00
"symmetric_norm" : true , // move normalization to range [-1, 1]
2020-05-20 09:55:32 +00:00
"max_norm" : 4.0 , // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
2018-11-02 15:13:51 +00:00
"clip_norm" : true , // clip normalized values into the range.
2020-04-09 10:28:52 +00:00
"stats_path" : null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
2018-11-02 15:13:51 +00:00
} ,
2018-09-06 12:33:21 +00:00
2020-03-01 18:47:08 +00:00
// VOCABULARY PARAMETERS
2020-03-09 09:19:08 +00:00
// if custom character set is not defined,
// default set in symbols.py is used
2020-03-17 11:44:18 +00:00
// "characters":{
// "pad": "_",
// "eos": "~",
// "bos": "^",
// "characters": "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!'(),-.:;? ",
// "punctuations":"!'(),-.:;? ",
// "phonemes":"iyɨʉɯ uɪ ʏ ʊeøɘəɵɤoɛœɜɞʌɔæɐaɶɑ ɒᵻʘɓǀ ɗǃ ʄǂɠǁʛpbtdʈɖcɟkɡ qɢʔ ɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣ χʁħʕhɦɬɮʋ ɹɻjɰlɭʎʟˈ ˌː ˑʍwɥʜʢʡɕʑɺɧɚ˞ɫ"
// },
2020-05-12 11:46:16 +00:00
2019-11-05 16:06:33 +00:00
// DISTRIBUTED TRAINING
2019-02-27 08:50:52 +00:00
"distributed" : {
"backend" : "nccl" ,
"url" : "tcp:\/\/localhost:54321"
} ,
2019-11-05 16:06:33 +00:00
"reinit_layers" : [ ] , // give a list of layer names to restore from the given checkpoint. If not defined, it reloads all heuristically matching layers.
2018-11-03 18:47:28 +00:00
2019-11-05 16:06:33 +00:00
// TRAINING
2020-02-20 11:48:45 +00:00
"batch_size" : 32 , // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
2020-05-12 11:46:16 +00:00
"eval_batch_size" : 16 ,
"r" : 7 , // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
2020-02-20 11:48:45 +00:00
"gradual_training" : [ [ 0 , 7 , 64 ] , [ 1 , 5 , 64 ] , [ 50000 , 3 , 32 ] , [ 130000 , 2 , 32 ] , [ 290000 , 1 , 32 ] ] , //set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. For Tacotron, you might need to reduce the 'batch_size' as you proceeed.
2019-11-05 16:08:15 +00:00
"loss_masking" : true , // enable / disable loss masking against the sequence padding.
2020-03-09 20:02:44 +00:00
"ga_alpha" : 10.0 , // weight for guided attention loss. If > 0, guided attention is enabled.
2019-11-05 16:06:33 +00:00
// VALIDATION
"run_eval" : true ,
2019-11-19 15:48:04 +00:00
"test_delay_epochs" : 10 , //Until attention is aligned, testing only wastes computation time.
2019-11-05 16:06:33 +00:00
"test_sentences_file" : null , // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
// OPTIMIZER
2020-01-15 11:07:19 +00:00
"noam_schedule" : false , // use noam warmup and lr schedule.
2020-05-20 09:55:32 +00:00
"grad_clip" : 1.0 , // upper limit for gradients for clipping.
2019-05-14 15:50:34 +00:00
"epochs" : 1000 , // total number of epochs to train.
2019-11-05 16:27:49 +00:00
"lr" : 0.0001 , // Initial learning rate. If Noam decay is active, maximum learning rate.
2020-05-20 09:55:32 +00:00
"wd" : 0.000001 , // Weight decay weight.
2019-05-14 15:50:34 +00:00
"warmup_steps" : 4000 , // Noam decay steps to increase the learning rate from 0 to "lr"
2020-05-20 09:55:32 +00:00
"seq_len_norm" : false , // Normalize eash sample loss with its length to alleviate imbalanced datasets. Use it if your dataset is small or has skewed distribution of sequence lengths.
2020-05-12 11:46:16 +00:00
2019-11-05 16:06:33 +00:00
// TACOTRON PRENET
2020-05-20 09:55:32 +00:00
"memory_size" : -1 , // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame.
2019-08-16 12:28:11 +00:00
"prenet_type" : "original" , // "original" or "bn".
2020-05-12 11:46:16 +00:00
"prenet_dropout" : true , // enable/disable dropout at prenet.
2019-11-05 16:06:33 +00:00
// ATTENTION
2020-02-12 22:54:33 +00:00
"attention_type" : "original" , // 'original' or 'graves'
2020-02-07 12:00:04 +00:00
"attention_heads" : 4 , // number of attention heads (only for 'graves')
2019-11-05 16:06:33 +00:00
"attention_norm" : "sigmoid" , // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
2019-07-21 14:32:56 +00:00
"windowing" : false , // Enables attention windowing. Used only in eval mode.
2020-05-20 09:55:32 +00:00
"use_forward_attn" : false , // if it uses forward attention. In general, it aligns faster.
2019-11-05 16:06:33 +00:00
"forward_attn_mask" : false , // Additional masking forcing monotonicity only in eval mode.
2019-08-16 12:28:11 +00:00
"transition_agent" : false , // enable/disable transition agent of forward attention.
2020-05-20 09:55:32 +00:00
"location_attn" : true , // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
2019-10-30 14:48:38 +00:00
"bidirectional_decoder" : false , // use https://arxiv.org/abs/1907.09006. Use it, if attention does not work well with your dataset.
2019-11-05 16:06:33 +00:00
// STOPNET
2020-05-12 11:46:16 +00:00
"stopnet" : true , // Train stopnet predicting the end of synthesis.
2020-05-20 09:55:32 +00:00
"separate_stopnet" : true , // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
2019-11-05 16:06:33 +00:00
// TENSORBOARD and LOGGING
"print_step" : 25 , // Number of steps to log traning on console.
2020-05-23 12:48:34 +00:00
"print_eval" : false , // If True, it prints intermediate loss values in evalulation.
2019-11-05 16:06:33 +00:00
"save_step" : 10000 , // Number of training steps expected to save traninpg stats and checkpoints.
"checkpoint" : true , // If true, it saves checkpoints per "save_step"
2020-05-12 11:46:16 +00:00
"tb_model_param_stats" : false , // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
2019-11-05 16:06:33 +00:00
// DATA LOADING
"text_cleaner" : "phoneme_cleaners" ,
2019-11-05 16:08:15 +00:00
"enable_eos_bos_chars" : false , // enable/disable beginning of sentence and end of sentence chars.
2019-11-05 16:06:33 +00:00
"num_loader_workers" : 4 , // number of training data loader processes. Don't set it too big. 4-8 are good values.
"num_val_loader_workers" : 4 , // number of evaluation data loader processes.
2019-05-14 15:50:34 +00:00
"batch_group_size" : 0 , //Number of batches to shuffle after bucketing.
2019-07-21 14:32:56 +00:00
"min_seq_len" : 6 , // DATASET-RELATED: minimum text length to use in training
2020-03-09 20:02:44 +00:00
"max_seq_len" : 153 , // DATASET-RELATED: maximum text length
2019-11-05 16:06:33 +00:00
// PATHS
2020-05-20 10:30:06 +00:00
"output_path" : "/home/erogol/Models/LJSpeech/" ,
2020-05-12 11:46:16 +00:00
2019-11-05 16:06:33 +00:00
// PHONEMES
2020-05-20 10:30:06 +00:00
"phoneme_cache_path" : "/media/erogol/data_ssd2/mozilla_us_phonemes_3" , // phoneme computation is slow, therefore, it caches results in the given folder.
2020-05-18 16:45:30 +00:00
"use_phonemes" : false , // use phonemes instead of raw characters. It is suggested for better pronounciation.
2019-03-06 12:09:21 +00:00
"phoneme_language" : "en-us" , // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
2019-11-05 16:06:33 +00:00
// MULTI-SPEAKER and GST
2019-08-16 12:22:35 +00:00
"use_speaker_embedding" : false , // use speaker embedding to enable multi-speaker learning.
2019-09-24 14:24:58 +00:00
"style_wav_for_test" : null , // path to style wav file to be used in TacotronGST inference.
2019-09-30 13:03:18 +00:00
"use_gst" : false , // TACOTRON ONLY: use global style tokens
2019-11-05 16:06:33 +00:00
// DATASETS
2019-09-30 13:03:18 +00:00
"datasets" : // List of datasets. They all merged and they get different speaker_ids.
[
{
"name" : "ljspeech" ,
2020-05-20 10:30:06 +00:00
"path" : "/home/erogol/Data/LJSpeech-1.1/" ,
2020-02-07 12:00:04 +00:00
"meta_file_train" : "metadata.csv" ,
"meta_file_val" : null
2019-09-30 13:03:18 +00:00
}
]
2018-12-31 12:20:15 +00:00
}
2019-05-28 12:59:24 +00:00